Skip to main content

Advertisement

Log in

Connectivity of Natura 2000 potential natural riparian habitats under climate change in the Northwest Iberian Peninsula: implications for their conservation

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Climate projections for the near future suggest a general increase in temperatures and a decrease in precipitation in Castilla y León (Northwest Iberian Peninsula). In this context, hydrographic networks may be reduced due to the decrease in flow accumulation, which may compromise the connectivity of riparian habitats and aggravate fragmentation processes, thus potentially threatening the survival of various wild species. Regionalized climate projections were calculated based on the RCP models and the 8.5 and 4.5 scenarios for the years 2030, 2050 and 2100. From this climate modelling, flow variations in the hydrographic networks were determined for the period 2020–2100. The observed decrease in precipitation and increase in temperature point to a reduction in flow accumulation. Considering these variations, and after establishing the study habitats, the alterations in ecological connectivity were analysed using the MSPA (Morphological Spatial Pattern Analysis) and the PC (Probability of Connectivity) index. MSPA reveals a significant reduction in the number and size of potential riparian habitat cores towards the year 2100, while the PC index values decrease from 3.1% (∑ dPC) in 2020 to 2.5% (∑ dPC) in 2100. These results indicate a substantial loss of ecological connectivity and an increased fragmentation of potential riparian habitats, as well as a close relation between reduced connectivity and flow accumulation for future climate projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agudo PA (2008) La nueva cultura del agua del siglo XXI. Sociedad Estatal Zaragoza Expoagua

  • Arribas P, Abellán P, Velasco J, Bilton DT, Lobo JM, Millán A, Sánchez-Fernández D (2012) La vulnerabilidad de las especies frente al cambio climático, un reto urgente para la conservación de la biodiversidad. Revista Ecosistemas 21(3):79–84

    Article  Google Scholar 

  • Bentrup G, Kellerman T (2004) Where should buffers go? Modeling riparian habitat connectivity in northeast Kansas. J Soil Water Conserv 59(5):209–215

    Google Scholar 

  • Camarero JJ (2016) Sed en el río: cómo el calentamiento climático y los cambios en la dinámica fluvial contribuyen al declive de los bosques de ribera (SED-IBER). Instituto Pirenaico de Ecología (CSIC)

  • Capon SJ, Chambers LE, Mac Nally R (2013) Riparian ecosystems in the 21st century: hotspots for climate change adaptation? Ecosystems 16:359–381. https://doi.org/10.1007/s10021-013-9656-1

    Article  Google Scholar 

  • CEDEX (2017) Evaluación del Impacto del Cambio Climático en los recursos hídricos y sequías de España. Informe Técnico Centro de Estudios Hidrográficos - CEDEX, Tomo único, clave CEDEX 42-415-0-001. Centro de Publicaciones, Secretaría General Técnica del Ministerio de Fomento

  • Clerici N, Vogt P (2013) Ranking European regions as providers of structural riparian corridors for conservation and management purposes. Int J Appl Earth Obs Geoinf 21:477–483

    Google Scholar 

  • Clerici N, Weissteiner CJ, Paracchini LM, Strobl P (2011) Riparian zones where green and blue networks meet: pan-European zonation modelling based on remote sensing and GIS. EUR-Scientific and Technical Research, 24774 (JRC 63959)

  • Correa C, Mendoza M (2013) Análisis morfológico de los patrones espaciales: una aplicación en el estudio multitemporal (1975–2008) de los fragmentos de hábitat de la cuenca del lago Cuitzeo, Michoacán, México. Geografía y Sistemas De Información Geográfica (GEOSIG) 5:50–63

    Google Scholar 

  • Daniele D (2009) Aplicación de sistemas de información geográfica al estudio de acuíferos costeros complejos. Caso del campo de Dalías, vol 261. Universidad Almería

  • De la Fuente B, Mateo MC, Rodríguez G, Gastón A, Pérez R, Colomina-Pérez D, Melero M, Saura S (2018) Natura 2000 sites, public forests and riparian corridors: the connectivity backbone of forest green infrastructure. Land Use Policy 75:429–441

    Article  Google Scholar 

  • De Matauco AI G (2004) Análisis morfométrico de la cuenca y de la red de drenaje del río Zadorra y sus afluentes aplicado a la peligrosidad de crecidas Boletín de la Asociación de Geógrafos Españoles, ISSN 0212-9426, No. 38, 2004, pp 311–330. 38. 311–323

  • Del Río S (2005) El cambio climático y su influencia en la vegetación de Castilla y León (España). Itinera Geobotanica 16:5–534

    Google Scholar 

  • Del Río S, Penas Á (2006) Potential areas of evergreen forests in Castile and Leon (Spain) according to future climate change. Phytocoenologia 36(1):45–66

    Article  Google Scholar 

  • Del Río S, Fraile R, Herrero L, Penas Á (2007) Analysis of recent trends in mean maximum and minimum temperatures in a region of the NW of Spain (Castilla y León). Theoret Appl Climatol 90(1–2):1–12

    Google Scholar 

  • Del Río S, Herrero L, Penas À (2009) Recent climatic trends in Castilla and León (Spain) and its possible influence on the potential natural vegetation. Acta Botanica Gallica 156(4):625–636

    Article  Google Scholar 

  • Del Río S, Penas Á, Fraile R (2005) Analysis of recent climatic variations in Castile and Leon (Spain). Atmos Res 73(1–2):69–85

    Google Scholar 

  • Díaz P, Fernández P (2001) Determinación del tamaño muestral para calcular la significación del coeficiente de correlación lineal. Metodología De La Investigación 1(6):209–211

    Google Scholar 

  • European Union Commission (1992) European Union Commission Habitats Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Publ. 22-07-1992. Luxembourg

  • Fahrig L (2003) Effects of Habitat Fragmentation on Biodiversity. Annu Rev Ecol Evol Syst 34(1):487–515

    Article  Google Scholar 

  • Forman RT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Reino Unido, p 632

    Book  Google Scholar 

  • García Quiroga F, Abad Soria J (2014) Los corredores ecológicos y su importancia ambiental: Propuestas de actuación para fomentar la permeabilidad y conectividad aplicadas al entorno del río Cardeña (Ávila y Segovia). Observatorio Medioambiental 17:253–298. https://doi.org/10.5209/rev_OBMD.2014.v17.47194

    Article  Google Scholar 

  • González E, Felipe-Lucia MR, Bérenger Bourgeois BB, Nilsson C, Palmer G, Sher A (2017) Integrative conservation of riparian zones. Biol Conserv 211:20–29. https://doi.org/10.1016/j.biocon.2016.10.035

    Article  Google Scholar 

  • Gurrutxaga M, Lozano PJ (2010) Causas de los procesos territoriales de fragmentación de hábitats. Lurralde 33:147–158

    Google Scholar 

  • Hermes C, Keller K, Nicholas RE, Segelbacher G, Schaefer HM (2018) Projected impacts of climate change on habitat availability for an endangered parakeet. PLoS ONE 13(1):e0191773. https://doi.org/10.1371/journal.pone.0191773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernando A, Velázquez J, Valbuena R, Legrand M, García-Abril A (2017) Influence of the resolution of forest cover maps in evaluating fragmentation and connectivity to assess habitat conservation status. Ecol Ind 79:295–302

    Article  Google Scholar 

  • Hopley T, Byrne M (2018) Connectivity in riparian plants: influence of vegetation type and habitat fragmentation overrides water flow. Oecologia 188:465–478. https://doi.org/10.1007/s00442-018-4226-z

    Article  PubMed  Google Scholar 

  • Huey RB, Tewksbury J (2009) Can behavior douse the fire of climate warming? PNAS 106(10):3647–3648. https://doi.org/10.1073/pnas.0900934106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilhardt BL, Verry ES, Palik BJ (2000) Defining riparian areas. Forestry and the riparian zone, Orono, Maine, pp 7–14

  • K.-1 Developers (2004) K-1 coupled GCM (MIROC) description Univ. of Tokyo. K-1 Technical Report 1, pp 1–34

  • Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4(1):170122. https://doi.org/10.1038/sdata.2017.122

    Article  PubMed  PubMed Central  Google Scholar 

  • Keith DA, Ferrer-Paris JR, Nicholson E, Kingsford RT (eds) (2020) The IUCN Global Ecosystem Typology 2.0: descriptive profiles for biomes and ecosystem functional groups. IUCN, Gland

    Google Scholar 

  • Klink CA, Sato MN, Cordeiro GG, Ramos MIM (2020) The role of vegetation on the dynamics of water and fire in the cerrado ecosystems: implications for management and conservation. Plants 2020(9):1803. https://doi.org/10.3390/plants9121803

    Article  Google Scholar 

  • Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I, Bathols J, Scott JK (2012) CliMond: global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol Evol 3:53–64

    Article  Google Scholar 

  • Land for Wildlife Queensland (2011) Note W1: Riparian Management and Restoration

  • Lavado JF, Borrega R (2016) Influencia del cambio climático en la distribución de los cervunales de la Península Ibérica. In Tecnologías de la Información Geográfica en el Análisis Espacial. Aplicaciones en los Sectores Público, Empresarial y Universitario. Grupo de Investigación en Desarrollo Sostenible y Planificación Territorial, pp 11–32

  • Leadley P, Pereira HM, Alkemade R, Fernandez-Manjarrés JF, Proença V, Scharlemann JPW, Walpole MJ (2010) Biodiversity scenarios: projections of 21st century change in biodiversity and associated ecosystem services. In: Diversity SotCoB (ed) Secretariat of the Convention on Biological Diversity. Montreal (Technical Series no. 50), p 132

  • McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) (2001) Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC) (vol 2). Cambridge University Press, Cambridge

    Google Scholar 

  • Maestro IC (2004) Impacto del algoritmo D(infinito) en la extracción automática de redes de drenaje a partir de modelos digitales de elevaciones. Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario, ISSN 0214-1744, vol 19, no 1–2, pp 23–33

  • Mann C, Plummer M (1995) Are wildlife corridors the right path? Science 270:1428–1430

    Article  CAS  Google Scholar 

  • Maraun D, Widmann M, Gutiérrez JM, Kotlarski S, Chandler RE, Hertig E, Wilcke RA (2015) VALUE: a framework to validate downscaling approaches for climate change studies. Earth’s Future 3(1):1–14. https://doi.org/10.1002/2014EF000259

    Article  Google Scholar 

  • McEuen A (1993) The wildlife corridor controversy: a review. Endanger Species Update 10:11–12

    Google Scholar 

  • Mestre I, Casado MJ, Rodríguez E (2015) Tendencias observadas y proyecciones de cambio climático sobre España. Capítulo 2 en Herrero A. and Zavala M.A. (eds). Los Bosques y la Biodiversidad frente al Cambio Climático: Impactos, Vulnerabilidad y Adaptación en España. MAGRAMA. pp 87–98

  • Morata Gasca A (2014) Guía de escenarios regionalizados de cambio climático sobre España a partir de los resultados del IPCC-AR4

  • Moreno JM, Rosa DDL, Zazo C (2005) Evaluación preliminar de los impactos en España por efecto del cambio climático. Ministerio de Medio Ambiente, España

    Google Scholar 

  • Nafría DA, Garrido N, Álvarez MV, Cubero D, Fernández M, Villarino I, Gutiérrez A, Abia Llera I (2013) Atlas agroclimático-Castilla y León

  • Naiman RJ, Bilby RE, Bisson PA (2009) Riparian ecology and management in the Pacific coastal rain forest. Bioscience 50:996–1011

    Article  Google Scholar 

  • Naiman RJ, Decamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecol Appl 3:209–212. https://doi.org/10.2307/1941822

    Article  PubMed  Google Scholar 

  • Nakicenovic N, Alcamo J, Grubler A, Riahi K, Roehrl RA, Rogner HH, Victor N (2000) Special report on emissions scenarios (SRES), a special report of Working Group III of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Oviedo BG, León G (2010) Guía de procedimiento para la generación de escenarios de cambio climático regional y local a partir de los modelos globales. Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W et al (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC), p 151

  • Pachauri RK, Meyer LA (2014) Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, p 151

    Google Scholar 

  • Pavelsky TM, Smith LC (2008) RivWidth: a software tool for the calculation of river widths from remotely sensed imagery. IEEE Geosci Remote Sens Lett 5(1):70–73

    Article  Google Scholar 

  • Peñuelas J, Sardans J, Filella I, Estiarte M, Llusià J, Ogaya R, Carnicer J et al (2017) Impacts of global change on mediterranean forests and their services. Forests 2017(8):463. https://doi.org/10.3390/f8120463

    Article  Google Scholar 

  • Ramos P, Petisco E, Martin JM, Rodríguez E (2016) Downscaled climate change projections over Spain: application to. Water management and climate change: dealing with uncertainties, p 81

  • Rivas-Martínez S et al (2011) Mapa de series, geoseries y geopermaseries de vegetación de España (Memoria del mapa de vegetación potencial de España) Parte II. Itinera Geobotanica 18(1):5–800

    Google Scholar 

  • Rivas-Martínez S, Penas Á, Del Río S, González TED, Rivas-Sáenz S (2017) Bioclimatology of the Iberian Peninsula and the Balearic Islands. In: Loidi J (ed) The vegetation of the Iberian Peninsula. Springer, Cham, pp 29–80

    Chapter  Google Scholar 

  • Robins JD, Cain JR (2002) The past and present condition of the Marsh Creek watershed. Natural Heritage Institute, Berkeley, p 71p

    Google Scholar 

  • Sabater S, Alosegi A (2013) River conservation: challenge and opportunities. Fundación BBVA, p 399

  • Sabo JL, Sponseller R, Dixon M, Gade K, Harms T, Heffernan J, Jani A, Katz G, Soykan C, Watts J, Welter J (2005) Riparian zones increase regional species richness by harboring different, not more, species. Ecology 86:56–62. https://doi.org/10.1890/04-0668

    Article  Google Scholar 

  • Santos MJ, Rosalino ML, Matos HM, Santos-Reis M (2016) Riparian ecosystem configuration influences mesocarnivores presence in Mediterranean landscapes. Eur J Wildl Res 62:251–261

    Article  Google Scholar 

  • Santos T, Tellería JL (2006) Pérdida y fragmentación del hábitat: efecto sobre la conservación de las especies. Ecosistemas 15:3–12

    Google Scholar 

  • Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83(2–3):91–103

    Article  Google Scholar 

  • Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33(3):523–537

    Google Scholar 

  • Saura S, Vogt P, Velázquez J, Hernando A, Tejera R (2011) Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. For Ecol Manag 262(2):150–160

    Article  Google Scholar 

  • Schloss CA, Nunez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc Natl Acad Sci 109(22):8606–8611. https://doi.org/10.1073/pnas.1116791109

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V et al (2019) Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC

  • Simberloff D (1992) Conservation of pristine habitats and unintended effects of biological control. En: Selection criteria and ecological consequences of importing natural enemies Conference Paper, pp 103–117

  • Soille P, Vogt P (2009) Morphological segmentation of binary patterns. Pattern Recogn Lett 30(4):456–459

    Article  Google Scholar 

  • Tarboton DG (2003). Terrain analysis using digital elevation models in hydrology. In: 23rd ESRI international users conference, Vol 14, San Diego, California

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Trouwborst A (2011) La Adaptación de la flora y fauna al cambio climático en un paisaje fragmentado y el Derecho europeo sobre la conservación de la naturaleza. Universitat Rovira i Virgili: Centre d'Estudis de Dret Ambiental de Tarragona (CEDAT)

  • Varela S, Terribile LC, de Oliveira G, Diniz-Filho JAF, González-Hernández J, Lima-Ribeiro MS (2015) ecoClimate vs. Worldclim: variables climáticas SIG para trabajar en biogeografía. Revista Ecosistemas 24(3):88–92

    Article  Google Scholar 

  • Velázquez J, Gutiérrez J, García-Abril A, Hernando A, Aparicio M, Sánchez B (2018) Structural connectivity as an indicator of species richness and landscape diversity in Castilla y León (Spain). For Ecol Manag 432:286–297

    Article  Google Scholar 

  • Velázquez J, Gutiérrez J, Hernando A, García-Abril A (2017) Evaluating landscape connectivity in fragmented habitats: Cantabrian capercaillie (Tetrao urogallus cantabricus) in northern Spain. For Ecol Manag 389:59–67

    Article  Google Scholar 

  • Velo-Antón G, Parra JL, Parra-Olea G, Zamudio KR (2013) Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander. Mol Ecol 22:3261–3278

    Article  PubMed  Google Scholar 

  • Verry ES, Dolloff CA, Manning ME (2004) Riparian ecotone: a functional definition and delineation for resource assessment. Water Air Soil Pollut Focus 4(1):67–94

    Article  Google Scholar 

  • Vogt P (2016) User guide of guidos toolbox. European Commission, Ispra

    Google Scholar 

  • Wenger S (1999) A review of the scientific literature on riparian buffer width, extent and vegetation

  • Wickham JD, Riitters KH, Wade TG, Vogt P (2010) A national assessment of green infrastructure and change for the conterminous United States using morphological image processing. Landsc Urban Plan 94(3–4):186–195

    Article  Google Scholar 

  • Weiler M, McGlynn BL, McGuire KJ, McDonnell JJ (2003) How does rainfall become runoff? A combined tracer and runoff transfer function approach. Water Resour Res 39:1315. https://doi.org/10.1029/2003WR002331

    Article  Google Scholar 

  • Zhu D, Ren Q, Xuan Y, Chen Y, Cluckie ID (2013) An effective depression filling algorithm for DEM-based 2-D surface flow modelling. Hydrol Earth Syst Sci 17(2):495–505

    Article  Google Scholar 

Online documents and websites

Download references

Acknowledgements

This work was supported by the DUEROCHANGE project funded by the Spanish Ministry for the Ecological Transition and Demographic Challenge through the Biodiversity Foundation under a grant for the evaluation of the Spanish terrestrial biodiversity 2020.

Author information

Authors and Affiliations

Authors

Contributions

JV designed the research; AP, VR, JV conducted the analysis; BS, FH, IG, AH, TS contributed analytical study of data; JV, VR, DS-M, led the writing with help from all the authors.

Corresponding author

Correspondence to Javier Velázquez.

Ethics declarations

Conflict of interest

They do not have any potential conflicts of interest. The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

The research did not involve Human Participants and/or Animals.

Informed consent They give their informed consent for a potential publication of this research.

Additional information

Communicated by Corrado Marcenò.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1848 kb)

Appendix C. Result tables for flow accumulation and PC index for each habitat

Appendix C. Result tables for flow accumulation and PC index for each habitat

See Tables 6 , 7 , 8 , 9, 10 and 11.

Table 6 Zonal statistics of current flow accumulation for each habitat
Table 7 Zonal statistics of flow accumulation for RCP 4.5
Table 8 Zonal statistics of flow accumulation for RCP 8.5
Table 9 Zonal statistics of PC Index for each habitat actually
Table 10 Zonal statistics of PC Index for each habitat RCP 4.5
Table 11 Zonal statistics of PC Index for each habitat RCP 8.5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rincón, V., Velázquez, J., Pascual, Á. et al. Connectivity of Natura 2000 potential natural riparian habitats under climate change in the Northwest Iberian Peninsula: implications for their conservation. Biodivers Conserv 31, 585–612 (2022). https://doi.org/10.1007/s10531-021-02351-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02351-z

Keywords

Navigation