Skip to main content
Log in

Hydrothermal carbonization: combination of heat of reaction measurements and theoretical estimations

An experimental procedure using a calvet differential scanning calorimeter

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Experimental data for the heat of reaction during the hydrothermal carbonization (HTC) of biomass are scarce. Theoretical approaches can be found in literature, but the values are in a wide range. Up to now, there is no publication that presents a combination of theoretical estimation and experimental determination of the heat of reaction. The comparison is very important, for example to improve and validate the theoretical approaches. In this study, a new experimental setup at a heat flow DSC in temperature scanning mode is presented. It allows for the first time a comparison between measured and estimated values for the heat of reaction from the same HTC experiment: a sample mass of about 1.25 g, composed of biomass from a nature protection area and water, is carbonized while the heat of reaction is recorded. The usage of a removable glass container as inset allows to balance the process. The sample volume allows CHN analysis of the HTC-coal for theoretical estimations of the heat of reaction. The results show that the setup leads to reproducible results for the recorded heat flows and the CHN composition of the HTC-coal. Compared to the experimentally determined value for the heat of reaction of biomass in HTC process of \((-715.1\,\pm \,15.3)\, {{\text{J\,g}}^{-1}_{\text {daf}}}\), the estimation for the heat of reaction leads to an overrated value, even if the dissolved organic matter (dried on the coal) is considered in the energy balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Cel:

Cellulose

daf:

Dry and ash-free

DOM:

Dissolved organic material

DSC:

Differential scanning calorimetry

HHV:

Higher heating value

HTC:

Hydrothermal carbonization

References

  1. Titirici MM, Thomas A, Antonietti M. Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem. 2007;31:787–9.

    Article  CAS  Google Scholar 

  2. Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin. 2010;4:160–77.

    Article  CAS  Google Scholar 

  3. Dinjus E, Kruse A, Tröger N. Hydrothermal carbonization - 1. influence of lignin in lignocelluloses. Chem Eng Technol. 2011;34:1–8.

    Article  Google Scholar 

  4. Bergius F. Beiträge zur Theorie der Kohleentstehung. Die Naturwissenschaften. 1928;16:1–10.

    Article  CAS  Google Scholar 

  5. Funke A, Ziegler F. Heat of reaction measurements for hydrothermal carbonization of biomass. Bioresour Technol. 2011;102:7595–8.

    Article  CAS  Google Scholar 

  6. Yan W, Hastings JT, Acharjee TC, Coronella CJ, Vásquez VR. Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels. 2010;24:4738–42.

    Article  CAS  Google Scholar 

  7. Coronella CJ, Lynam JG, Reza MT, Uddin MH. Hydrothermal carbonization of lignocellulosic biomass. In: Jin F, editor. Application of hydrothermal reactions to biomass conversion. Berlin Heidelberg: Springer Verlag; 2014. p. 275–311.

    Chapter  Google Scholar 

  8. Berge ND, Ro KS, Mao J, Flora JRV, Chappell Ma, Bae S. Hydrothermal carbonization of municipal waste streams. Environ Sci Technol. 2011;45:5696–703.

    Article  CAS  Google Scholar 

  9. Stemann J, Ziegler F. Assessment of the energetic efficiency of a continuously operating plant for hydrothermal carbonisation of biomass. In world renewable energy Congress. 2011;125–132.

  10. Funke A, Ziegler F. Propagation of uncertainties and systematic errors in the measurements of long-lasting heat flows using differential scanning calorimetry. J Therm Anal Calorim. 2011;3:1317–24.

    Google Scholar 

  11. Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002;81:1051–63.

    Article  CAS  Google Scholar 

  12. Höhne GWH, Flemmiger WF, Flammersheim H. Differential scanning calorimetry. New York: Springer Verlag; 2003.

    Book  Google Scholar 

  13. Terres E. Beitrag zur Kenntnis des Ablaufs der physikalischen und chemischen Vorgängen bei der thermischen Behandlung von Rohtorfen. Brennstoff-Chemie. 1952;33:353–61.

    CAS  Google Scholar 

  14. Funke A, Ziegler F. Hydrothermal carbonization of biomass: a literature survey focussing on its technical application and prospects. Eur Biomass Conf Exhib. 2009;17:1037–50.

    Google Scholar 

  15. Sevilla M, Fuertes AB. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J. 2009;15:4195–203.

    Article  CAS  Google Scholar 

  16. Bergius F. Die Anwendung hoher Drücke bei chemischen Vogängen und eine Nachbildung des Enstehungsprozesses der Steinkohle. Halle a. d. Saale: Wilhelm Knapp; 1913;p. 41–58.

  17. Fratzscher W, Picht HP. Stoffdaten und Kennwerte der Verfahrenstechnik. Leipzig: Deutscher Verlag für Grundstoffindustrie; 1979.

    Google Scholar 

  18. Schuhmacher JP, Huntjens FJ. Chemical structure and properies of coal XXVI—studies on artificial coalification. Fuel. 1960;39:223–34.

    CAS  Google Scholar 

  19. Sevilla M, Maciá-Agulló JA, Fuertes AB. Hydrothermal carbonization of biomass as a route for the sequestration of CO\(_2\): chemical and structural properties of the carbonized products. Biomass Bioenergy. 2011;35:3152–9.

    Article  CAS  Google Scholar 

  20. Calucci L, Rasse DP, Forte C. Solid-state NMR characterization of chars obtained from hydrothermal carbonization of corncob and Miscanthus. Energy Fuels. 2012;27:303–9.

    Article  Google Scholar 

  21. Liu Z, Quek A, Hoekman SK, Balasubramanian R. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel. 2013;103:943–9.

    Article  CAS  Google Scholar 

  22. Hoekman SK, Broch A, Robbins C, Zielinska B, Felix L. Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers Biorefin. 2012;3:113–26.

    Article  Google Scholar 

  23. Xiao LP, Shi Z, Xu F, Sun RC. Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol. 2012;118:619–23.

    Article  CAS  Google Scholar 

  24. Waldner MH, Vogel F. Renewable production of methane from woody biomass by catalytic hydrothermal gasification. Ind Eng Chem Res. 2005;44:4543–51.

    Article  CAS  Google Scholar 

  25. Kruse A, Funke A, Titirici MM. Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol. 2013;3:1–7.

    Google Scholar 

  26. Meyer S, Glaser B, Quicker P. Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol. 2011;45:9473–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the European Regional Development Fund (ERDF) project “HTC in Niedersachsen”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammo Rebling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebling, T., von Frieling, P., Buchholz, J. et al. Hydrothermal carbonization: combination of heat of reaction measurements and theoretical estimations. J Therm Anal Calorim 119, 1941–1953 (2015). https://doi.org/10.1007/s10973-014-4361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4361-7

Keywords

Navigation