Skip to main content

Advertisement

Log in

Some considerations on the structure, composition, and properties of Prussian blue: a contribution to the current discussion

  • Progress Report
  • Published:
Ionics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. Calculation for a Prussian blue cube with 10.2-nm edge length: one edge has 21 iron ions, one plane has 441 iron ions, the whole cube of soluble Prussian blue has 9261 iron ions, with 4630.5 Fe(III) and 4630.5 Fe(II) (Fe(III):Fe(II) = 1:1). In insoluble Prussian blue, this would be 4630.5 Fe(III) and because of 25% ferrocyanide vacancies only 3472.875 Fe(II) (Fe(III):Fe(II) = 4:3). On the surface of a 21 × 21 × 21 iron ion cube, there are 1201 Fe(III) ions. If we add 1201 additional Fe(II) for the insoluble to soluble conversion by ferrocyanide attachment to surface-Fe(III), we have 4630.5 Fe(III) and 4676.875 Fe(II) (Fe(III):Fe(II) = 1:1.01).

References

  1. Ludi A (1981) Prussian blue, an inorganic evergreen. J Chem Educ 58:1013

    Article  CAS  Google Scholar 

  2. Ivanov VD (2020) Four decades of electrochemical investigation of Prussian blue. Ionics 26:531–547

    Article  CAS  Google Scholar 

  3. Buser H-J, Schwarzenbach D, Petter W, Ludi A (1977) The crystal structure of Prussian blue: Fe4[Fe(CN)6]3·H2O. Inorg Chem 16:2704–2710

    Article  CAS  Google Scholar 

  4. Kraft A (2008) On the discovery and history of Prussian blue. Bull Hist Chem 33:61–67

    CAS  Google Scholar 

  5. Berzelius JJ (1820) Untersuchung der Zusammensetzung der eisenhaltigen blausauren Salze. Journal für Chemie und Physik 30:1–67

    Google Scholar 

  6. Müller E, Stanisch T (1909) Berlinerblau und Turnbullsblau. J prakt Chem 79:81–102

    Article  Google Scholar 

  7. Duncan JF, Wigley PWR (1963) The electronic structure of the iron atoms in complex iron cyanides. J Chem Soc 1963:1120–1125

    Article  Google Scholar 

  8. Fluck E, Kerler W, Neuwirth W (1963) The Mössbauer effect and its significance in chemistry. Angew Chem Int Ed 2:277–278

    Article  Google Scholar 

  9. Keggin JF, Miles FD (1936) Structures and formulae of the Prussian blues and related compounds. Nature 137:577–578

    Article  CAS  Google Scholar 

  10. Estelrich J, Busquets MA (2021) Prussian blue: a safe pigment with zeolitic-like activity. Int J Mol Sci 22:780

    Article  CAS  PubMed Central  Google Scholar 

  11. Herren F, Fischer P, Ludi A, Haelg W (1980) Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order. Inorg Chem 19:956–959

    Article  CAS  Google Scholar 

  12. Wyrouboff GN (1876) Recherches sur les ferrocyanures. Ann chim phys 8:444–486

    Google Scholar 

  13. Gintl W (1880) Krystallisirtes Berlinerblau. Polytechn Notizblatt 35:136–137

    Google Scholar 

  14. Munoz MJP, Martinez EC (2018) Prussian blue based batteries, Springer:2018

  15. Verdaguer M (2019) Structure and magnetism of prussian blues and analogues: a historical perspective. In: Guari Y, Larionova J (eds) Prussian blue nanoparticles and nanocomposites: Synthesis, devices and applications. Pan Stanford Publishing, Singapore, pp 27–67

    Chapter  Google Scholar 

  16. Chen J, Wei L, Mahmood A, Pei Z, Zhou Z, Chen X, Chen Y (2020) Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Stor Mater 25:585–612

    Google Scholar 

  17. McCargar JW, Neff VD (1988) Thermodynamics of mixed-valence intercalation reactions: the electrochemical reduction of prussian blue. J Phys Chem 92:3598–3604

    Article  CAS  Google Scholar 

  18. Dostal A, Kauschka G, Reddy SJ, Scholz F (1996) Lattice contractions and expansions accompanying the electrochemical conversions of Prussian blue and the reversible and irreversible insertion of rubidium and thallium ions. J Electroanal Chem 406:155–163

    Article  Google Scholar 

  19. Scholz F, Schwudke D, Stösser R, Bohacek J (2001) The interaction of prussian blue and dissolved hexacyanoferrate ions with goethite (a-FeOOH) studied to assess the chemical stability and physical mobility of prussian blue in soils. Ecotox Environ Safe 49:245–254

    Article  CAS  Google Scholar 

  20. Samain L, Grandjean F, Long GJ, Martinetto P, Bordet P, Strivay D (2013) Relationship between the synthesis of prussian blue pigments, their color, physical properties, and their behavior in paint layers. J Phys Chem C 117:9693–9712

    Article  CAS  Google Scholar 

  21. Gotoh A, Uchida H, Ishizaki M, Satoh T, Kaga S, Okamoto S, Ohta M, Sakamoto M, Kawamoto T, Tanaka H, Tokumoto M, Hara S, Shiozaki H, Yamada M, Miyake M, Kurihara M (2007) Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues. Nanotechnology 18:345609

    Article  Google Scholar 

  22. Ishizaki M, Kurihara M (2019) Prussian blue nanoparticles‘ synthesis and their inks. In: Guari Y, Larionova J (eds) Prussian blue nanoparticles and nanocomposites: Synthesis, devices and applications. Pan Stanford Publishing, Singapore, pp 183–216

    Chapter  Google Scholar 

  23. Guignet CE (1889) Nouveau dissolvants du bleu du Prusse: preparation facile du bleu soluble ordinaire et du bleu du Prusse pur soluble dans l‘eau. Compt rend 108:178–181

    Google Scholar 

  24. Cisternas R, Munoz E, Henriquez R, Cordova R, Kahlert H, Hasse U, Scholz F (2011) Irreversible electrostatic deposition of Prussian blue from colloidal solutions. J Solid State Electrochem 15:2461–2468

    Article  CAS  Google Scholar 

  25. Kuhn M (1943) Demonstration of some properties of Prussian blue. J Chem Educ 20:198

    Article  Google Scholar 

  26. Kuhn M (1951) Einwirkung der Natriumzitrate auf das Berlinerblau. Anal Chim Acta 5:525–528

    Article  Google Scholar 

  27. Stephens H, Nash E (1839) Specification of the Patent ... for ... rendering certain Colour or Colours applicable to Dyeing, Staining, and Writing. The Repertory of Patent Inventions and other Discoveries & Improvements in Arts, Manufactures, and Agriculture 11:50-59.

  28. Ishizaki M, Abe M, Hoshi Y, Sakamoto M, Tanaka H, Kawamoto T, Kurihara M (2010) Dispersion control of surface-charged prussian blue nanoparticles into greener solvents. Chem Lett 39:138–139

    Article  CAS  Google Scholar 

  29. Ishizaki M, Kanaizuka K, Abe M, Hoshi Y, Sakamoto M, Kawamoto T, Tanaka H, Kurihara M (2012) Preparation of electrochromic Prussian blue nanoparticles dispersible into various solvents for realisation of printed electronics. Green Chem 14:1537–1544

    Article  CAS  Google Scholar 

  30. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  CAS  Google Scholar 

  31. Simoes MC, Hughes KJ, Ingham DB, Ma L, Pourkashanian M (2017) Estimation of the thermochemical radii and ionic volumes of complex ions. Inorg Chem 56:7566–7573

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Zhu Q, Li H, Xie C, Zeng D (2018) Tuning the particle size of prussian blue by a dual anion source method. Cryst Growth Des 18:5780–5789

    Article  CAS  Google Scholar 

  33. Hu M, Jiang JS (2011) Facile synthesis of air-stable Prussian white microcubes via a hydrothermal method. Mater Res Bull 46:702–707

    Article  CAS  Google Scholar 

  34. Zheng X-J, Kuang Q, Xu T, Jiang Z-Y, Zhang S-H, Xie Z-X, Huang R-B, Zheng L-S (2007) Growth of Prussian blue microcubes under a hydrothermal condition: possible nonclassical crystallization by a mesoscale self-assembly. J Phys Chem C 111:4499–4502

    Article  CAS  Google Scholar 

  35. Qian J, Ma D, Xu Z, Li D, Wang J (2018) Electrochromic properties of hydrothermally grown Prussian blue film and device. Sol Ener Mater Sol Cells 177:9–14

    Article  CAS  Google Scholar 

  36. Chu J, Li X, Cheng Y, Xiong S (2020) Electrochromic properties of Prussian blue nanocube film directly grown on FTO substrates by hydrothermal method. Mater Lett 258:126782

    Article  CAS  Google Scholar 

  37. Wu X, Shao M, Wu C, Qian J, Cao Y, Ai X, Yang H (2016) Low Defect FeFe(CN)6 Framework as stable host material for high performance Li-Ion batteries. ACS Appl Mater Interfaces 8:23706–23712

    Article  CAS  PubMed  Google Scholar 

  38. Liu Y, Wei G, Ma M, Qiao Y (2017) Role of acid in tailoring prussian blue as cathode for high-performance sodium-ion battery. Chem Eur J 23:15991–15996

    Article  CAS  PubMed  Google Scholar 

  39. Xu Y, Zhang Y, Cai X, Gao W, Tang X, Chen Y, Chen J, Chen L, Tian Q, Yang S, Zheng Y, Hu B (2019) Large-scale synthesis of monodisperse Prussian blue nanoparticles for cancer theranostics via an “in situ modification” strategy. Int J Nanomed 14:271–288

    Article  CAS  Google Scholar 

  40. You Y, Wu X-L, Yin Y-X, Guo Y-G (2014) High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ Sci 7:1643–1647

    Article  CAS  Google Scholar 

  41. Brant WR, Mogensen R, Colbin S, Ojwang DO, Schmid S, Häggström L, Ericsson T, Jaworski A, Pell AJ, Younesi R (2019) Selective control of composition in Prussian white for enhanced material properties. Chem Mater 31:7203–7211

    Article  CAS  Google Scholar 

  42. Hofmann KA, Heine O, Höchtlen F (1904) Ueber die blauen Eisencyanverbindungen. Liebigs Ann Chem 337:1–36

    Article  CAS  Google Scholar 

  43. Wu X, Cao M, Hu C, He X (2006) Sonochemical synthesis of Prussian blue nanocubes from a single-source precursor. Cryst Growth Des 6:26–28

    Article  CAS  Google Scholar 

  44. Levin EE, Kokin AA, Presnov DE, Borzenko AG, Vassiliev SY, Nikitina VA, Stevenson KJ (2020) Electrochemical analysis of the mechanism of potassium-ion insertion into K-rich prussian blue materials. ChemElectroChem 7:761–769

    Article  CAS  Google Scholar 

  45. Hu Y-L, Yuan J-H, Chen W, Wang K, Xia X-H (2005) Photochemical synthesis of Prussian blue film from an acidic ferricyanide solution and application. Electrochem Commun 7:1252–1256

    Article  CAS  Google Scholar 

  46. Kuhn DD, Young TC (2005) Photolytic degradation of hexacyanoferrate (II) in aqueous media: the determination of the degradation kinetics. Chemosphere 60:1222–1230

    Article  CAS  PubMed  Google Scholar 

  47. Eder JM (1885) Untersuchungen über die chemischen Wirkungen des Lichtes. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 6:495–505

    Article  Google Scholar 

  48. Ašperger S (1952) Kinetics of the decomposition of potassium ferrocyanide in ultra-violet light. Trans Faraday Soc 48:617–624

    Article  Google Scholar 

  49. Yang R, Qian Z, Deng J (1998) Electrochemical deposition of Prussian blue from a single ferricyanide solution. J Electrochem Soc 145:2231–2236

    Article  CAS  Google Scholar 

  50. Porrett R (1814) On the nature of the salts termed triple prussites, and on acids formed by the union of certain bodies with the elements of the prussic acid. Phil Trans R. Soc Lond 104:527–556

    Google Scholar 

  51. Zhang D, Wang K, Sun D, Xia X, Chen H (2003) Potentiodynamic deposition of Prussian blue from a solution containing single component of ferricyanide and its mechanism investigation. J Solid State Electrochem 7:561–566

    Article  CAS  Google Scholar 

  52. Yang C, Wang C-H, Wu J-S, Xia X (2006) Mechanism investigation of Prussian blue electrochemically deposited from a solution containing single component of ferricyanide. Electrochim Acta 51:4019–4023

    Article  CAS  Google Scholar 

  53. Shokouhimehr M, Soehnlen ES, Hao J, Griswold M, Flask C, Fan X, Basilion JP, Basu S, Huang SD (2010) Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: a new generation of T1-weighted MRI contrast and small molecule delivery agents. J Mater Chem 20:5251–5259

    Article  CAS  Google Scholar 

  54. Wang W, Hu Z, Yan Z, Peng J, Chen M, Lai W, Gu Q-F, Chou S-L, Liu H-K, Dou S-X (2020) Understanding rhombohedral iron hexacyanoferrate with three different sodium positions for high power and long stability sodium-ion battery. Energy Stor Mater 30:42–51

    Google Scholar 

  55. Jia Z (2011) Synthesis of Prussian blue nanocrystals with metal complexes as precursors: quantitative calculations of species distribution and its effects on particles size. Colloid Surf A-Physicochem Eng Asp 389:144–148

    Article  CAS  Google Scholar 

  56. Ding Y, Deng B, Wang H, Li X, Chen T, Yan X, Wan Q, Qu M, Peng G (2019) Improved electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material by reducing lithium residues with the coating of Prussian blue. J Alloy Compd 774:451–460

    Article  CAS  Google Scholar 

  57. Neale ZG, Liu C, Cao G (2020) Effect of synthesis pH and EDTA on iron hexacyanoferrate for sodium-ion batteries. Sustain Energy Fuels 4:2884–2891

    Article  CAS  Google Scholar 

  58. Li L, Nie P, Chen Y, Wang J (2019) Novel acetic acid induced Na-rich Prussian blue nanocubes with iron defects as cathodes for sodium ion batteries. J Mater Chem 7:12134–12144

    Article  CAS  Google Scholar 

  59. Uemura T, Kitagawa S (2003) Prussian blue nanoparticles protected by poly(vinylpyrrolidone). J Am Chem Soc 125:7814–7815

    Article  CAS  PubMed  Google Scholar 

  60. Liu M, Yan X, Liu H, Yu W (2000) An investigation of the interaction between polyvinylpyrrolidone and metal cations. React Funct Polym 44:55–64

    Article  CAS  Google Scholar 

  61. Hornok V, Dekany I (2007) Synthesis and stabilization of Prussian blue nanoparticles and application for sensors. J Colloid Interface Sci 309:176–182

    Article  CAS  PubMed  Google Scholar 

  62. Uemura T, Ohba M, Kitagawa S (2004) Size and surface effects of Prussian blue nanoparticles protected by organic polymers. Inorg Chem 43:7339–7345

    Article  CAS  PubMed  Google Scholar 

  63. Zhai J, Zhai Y, Wang L, Dong S (2008) Rapid synthesis of polyethylenimine-protected Prussian blue nanocubes through a thermal process. Inorg Chem 47:7071–7073

    Article  CAS  PubMed  Google Scholar 

  64. Vaucher S, Li M, Mann S (2000) Synthesis of Prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions. Angew Chem Int Ed 39:1793–1796

    Article  CAS  Google Scholar 

  65. Perekalin DS, Shved DS, Nelyubina YV (2019) Organometallic cyanotype: formation of Prussian blue by a photochemical decomposition of the arene iron complex. Mendeleev Commun 29:71–73

    Article  CAS  Google Scholar 

  66. Herschel JFW (1842) On the action of the rays of the solar spectrum on vegetable colours, and on some new photographic processes. Philos Trans 132:181–214

    Article  Google Scholar 

  67. Ho K-C (1999) Cycling and at-rest stabilities of a complementary electrochromic device based on tungsten oxide and Prussian blue thin films. Electrochim Acta 44:3227–3235

    Article  CAS  Google Scholar 

  68. Barton RT, Kellawi H, Marken F, Mortimer RJ, Rosseinsky DR (2012) Simplest Prussian-blue deposition from ferric ferricyanide solution by a reducing Ag spot put onto an ITO substrate. J Solid State Electrochem 16:3723–3724

    Article  CAS  Google Scholar 

  69. Zunke I, Kloß D, Heft A, Schmidt J, Grünler B (2016) Replacing the wet chemical activation with an atmospheric pressure technique in electroless deposition of Prussian blue. Surf Coat Tech 289:186–193

    Article  CAS  Google Scholar 

  70. Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian blue. J Electrochem Soc 125:886–887

    Article  CAS  Google Scholar 

  71. Ellis D, Eckhoff M, Neff VD (1981) Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J Phys Chem 85:1225–1231

    Article  CAS  Google Scholar 

  72. Doumic L, Salierno G, Cassanello M, Haure P, Ayude M (2015) Efficient removal of orange G using Prussian blue nanoparticles supported over alumina. Catal Today 240:67–72

    Article  CAS  Google Scholar 

  73. Nobrega JA, Lopes GS (1996) Flow-injection spectrophotometric determination of ascorbic acid in pharmaceutical products with the Prussian Blue reaction. Talanta 43:971–976

    Article  CAS  PubMed  Google Scholar 

  74. Shiba F (2010) Preparation of monodisperse Prussian blue nanoparticles via reduction process with citric acid. Colloids Surf A Physicochem Eng Asp 366:178–182

    Article  CAS  Google Scholar 

  75. Golodetz L, Unna PG (1909) Zur Chemie der Haut. III. Das Reduktionsvermögen der histologischen Elemente der Haut. Monatsh f prakt Dermatol 48:149–166

    Google Scholar 

  76. Schmorl G (1928) Die pathologisch-histologischen Untersuchungsmethoden, 205.

  77. Itaya K, Ataka T, Toshima S (1982) Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J Am Chem Soc 104:4767–4772

    Article  CAS  Google Scholar 

  78. Itaya K, Akahoshi H, Toshima S (1982) Electrochemistry of Prussian blue modified electrodes: an electrochemical preparation method. J Electrochem Soc 129:1498–1500

    Article  CAS  Google Scholar 

  79. Mortimer RJ, Rosseinsky DR (1983) Electrochemical polychromicity in iron hexacyanoferrate films, and a new film form of ferric ferricyanide. J Electroanal Chem 151:133–147

    Article  CAS  Google Scholar 

  80. Mortimer RJ, Rosseinsky DR (1984) Iron hexacyanoferrate films: spectroelectrochemical distinction and electrodeposition sequence of 'soluble' (K+-containing) and 'insoluble' (K+-free) Prussian blue, and composition changes in polyelectrochromic switching. J Chem Soc Dalton Trans 9:2059–2062

    Article  Google Scholar 

  81. Ogura K, Nakayama M, Nakaoka K (1999) Electrochemical quartz crystal microbalance and in situ infrared spectroscopic studies on the redox reaction of Prussian blue. J Electroanal Chem 474:101–106

    Article  CAS  Google Scholar 

  82. Oh I, Lee H, Yang H, Kwak J (2001) Ion and water transports in Prussian blue films investigated with electrochemical quartz crystal microbalance. Electrochem Commun 3:274–280

    Article  CAS  Google Scholar 

  83. Emrich RJ, Traynor L, Gambogi W, Buhks E (1987) Surface analysis of electrochromic displays of iron hexacyanoferrate films by x-ray photoelectron spectroscopy. J Vac Sci Technol A 5:1307–1310

    Article  CAS  Google Scholar 

  84. Lundgren CA, Murray RW (1988) Observations on the composition of Prussian blue films and their electrochemistry. Inorg Chem 27:933–939

    Article  CAS  Google Scholar 

  85. Rosseinsky DA, Andrew Glidle A (2003) EDX, spectroscopy, and composition studies of electrochromic iron(III) hexacyanoferrate(II) deposition. J Electrochem Soc 150:C641–C645

    Article  CAS  Google Scholar 

  86. Masui H, Murray RW (1998) Diode-like property of prussian blue films containing concentration gradients in serial mixed valent layers. J Electrochem Soc 145:3788–3793

    Article  CAS  Google Scholar 

  87. Agrisuelas J, Garcia-Jareno JJ, Gimenez-Romero D, Vicente F (2009) Insights on the mechanism of insoluble-to-soluble Prussian blue transformation. J Electrochem Soc 156:P149–P156

    Article  CAS  Google Scholar 

  88. Itaya K, Uchida I (1986) Nature of intervalence charge-transfer bands in Prussian blues. Inorg Chem 25:389–392

    Article  CAS  Google Scholar 

  89. Feldman BJ, Melroy OR (1987) Ion flux during electrochemical charging of Prussian blue films. J Electroanal Chem 234:213–227

    Article  CAS  Google Scholar 

  90. Garcia-Jareno JJ, Sanmatias A, Vicente F, Gabrielli C, Keddam M, Perrot H (2000) Study of Prussian blue (PB) films by ac-electrogravimetry: influence of PB morphology on ions movement. Electrochim Acta 45:3765–3776

    Article  CAS  Google Scholar 

  91. Kraft A (2014) On the history of Prussian blue: Thomas Everitt (1805-1845) and Everitt’s Salt. Bull Hist Chem 39:18–25

    CAS  Google Scholar 

  92. Wang L, Song J, Qiao R, Wray LA, Hossain MA, Chuang Y-D, Yang W, Lu Y, Evans D, Lee J-J, Vail S, Zhao X, Nishijima M, Kakimoto S, Goodenough JB (2015) Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J Am Chem Soc 137:2548–2554

    Article  CAS  PubMed  Google Scholar 

  93. Piernas-Munoz MJ, Castillo-Martinez E, Bondarchuk O, Armand M, Rojo T (2016) Higher voltage plateau cubic Prussian white for Na-ion batteries. J Power Sources 324:766–773

    Article  CAS  Google Scholar 

  94. Li C, Zang R, Li P, Man Z, Wang S, Li X, Wu Y, Liu S, Wang G (2018) High crystalline Prussian white nanocubes as a promising cathode for sodium-ion batteries. Chem Asian J 13:342–349

    Article  CAS  PubMed  Google Scholar 

  95. Dong J, Lei Y, Han D, Wang H, Zhai D, Li B, Kang F (2019) Utilizing an autogenously protective atmosphere to synthesize a Prussian white cathode with ultrahigh capacity-retention for potassium-ion batteries. Chem Commun 55:12555–12558

    Article  CAS  Google Scholar 

  96. Paolella A, Faure C, Timoshevskii V, Marras S, Bertoni G, Guerfi A, Vijh A, Armand M, Zaghib K (2017) A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. J Mater Chem A 5:18919–18932

    Article  CAS  Google Scholar 

  97. Lu Y, Wang L, Cheng J, Goodenough JB (2012) Prussian blue: a new framework of electrode materials for sodium batteries. Chem Commun 48:6544–6546

    Article  CAS  Google Scholar 

  98. Yang Y, Liu E, Yan X, Ma C, Wen W, Liao X-Z, Ma Z-F (2016) Influence of structural imperfection on electrochemical behavior of Prussian blue cathode materials for sodium ion batteries. J Electrochem Soc 163:A2117–A2123

    Article  CAS  Google Scholar 

  99. Wang W, Gang Y, Hu Z, Yan Z, Li W, Li Y, Gu Q-F, Wang Z, Chou S-L, Liu H-K, Dou S-X (2020) Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat Commun 11:980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. DeWet JF, Rolle R (1965) On the existence and autoreduction of Iron(III)-hexacyanoferrate(III). Z Anorg Allgem Chem 336:96–103

    Article  CAS  Google Scholar 

  101. Ojwang DO, Häggström L, Ericsson T, Ångström J, Brant WR (2020) Influence of sodium content on the thermal behavior of low vacancy Prussian white cathode material. Dalton Trans 49:3570–3579

    Article  CAS  PubMed  Google Scholar 

  102. Virbickas P, Valiuniene A, Kavaliauskaite G, Ramanavičius A (2019) Prussian white-based optical glucose biosensor. J Electrochem Soc 166:B927–B932

    Article  CAS  Google Scholar 

  103. Ojwang DO, Svensson M, Njel C, Mogensen R, Menon AS, Ericsson T, Häggström L, Maibach J, Brant WR (2021) Moisture-driven degradation pathways in prussian white cathode material for sodium-ion batteries. ACS Appl Mater Interfaces 13:10054–10063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang L, Liu Q, Wan M, Peng J, Luo Y, Zhang H, Ren J, Xu L, Zhang W (2020) Surface passivation of NaxFe[Fe(CN)6] cathode to improve its electrochemical kinetics and stability in sodium-ion batteries. J Power Sources 448:227421

    Article  CAS  Google Scholar 

  105. Komayko AI, Ryazantsev SV, Trussov IA, Arkharova NA, Presnov DE, Levin EE, Nikitina VA (2021) The Misconception of Mg2+ insertion into Prussian blue analog structures from aqueous solution. ChemSusChem ###.

  106. Sharma VK, Mitra S, Thakur N, Yusuf SM, Mukhopadhyay (2014) Dynamics of water in prussian blue analogues: neutron scattering study. J Appl Phys 116:034909

    Article  Google Scholar 

  107. Padigi P, Thiebes J, Swan M, Evans GD, Solanki R (2015) Prussian green: a high rate capacity cathode for potassium ion batteries. Electrochim. Acta 166:32–39

    Article  CAS  Google Scholar 

  108. Hegner FS, Galain-Mascarois JR, Lopez N (2016) A database of the structural and electronic properties of Prussian blue, Prussian white, and Berlin green compounds through density functional theory. Inorg Chem 55:12851–12862

    Article  CAS  PubMed  Google Scholar 

  109. Wu X, Xu Y, Jiang H, Wei Z, Jessica J. Hong JJ, Hernandez AS, Du F, Ji X (2018) NH4+ topotactic insertion in Berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries. ACS Appl Energy Mater 1:3077–3083.

  110. Ibers JA, Davidson N (1951) On the interaction between hexacyanatoferrate(III) ions and (a) hexacyanatoferrate(II) or (b) iron(III) ions. J Am Chem Soc 73:476–478

    Article  CAS  Google Scholar 

  111. Walker RG, Watkins KO (1968) A study of the kinetics of complex formation between hexacyanoferrate(III) ions and iron(III) to form FeFe(CN)6 (Prussian brown). Inorg Chem 7:885–888

    Article  CAS  Google Scholar 

  112. Tananaev IV, Glushkova MA, Seifer GB (1956) The solubility series of ferrocyanides. J Inorg Chem USSR 1:72–74

    Google Scholar 

  113. Wood KS, Zacharia NS, Schmidt DJ, Wrightman SN, Andaya BJ, Hammond PT (2008) Electroactive controlled release thin films. PNAS 105:2280–2285

    Article  CAS  PubMed  Google Scholar 

  114. Reguerra E, Fernandez-Bertran J, Diaz C, Molerio J (1992) Behaviour of Prussian blue during its interaction with ozone. Hyp. Int. 73:285–294

    Article  Google Scholar 

  115. Ricci F, Paleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosens Bioelectron 21:389–407

    Article  CAS  PubMed  Google Scholar 

  116. Neff VD (1985) Some performance characteristics of a Prussian blue battery. J Electrochem Soc 132:1382–1384

    Article  CAS  Google Scholar 

  117. Jayalakshmi M, Scholz F (2000) Charge-discharge characteristics of a solid state Prussian blue secondary cell. J Power Sources 87:212–217

    Article  CAS  Google Scholar 

  118. Wang B, Wang X, Liang C, Yan M, Jiang Y (2019) An all-Prussian-blue-based aqueous sodium-ion battery. ChemElectroChem 6:4848–4853

    Article  CAS  Google Scholar 

  119. Rosseinsky DR, Soutar AM, Annergren IF, Glidle A (2001) New solely Prussian-blue ec configurations. Proc SPIE 4458:248–260

    Article  CAS  Google Scholar 

  120. Carpenter MK, Conell RS (1989) Electrolyte-free electrochromic device. Appl Phys Lett 55:2245–2247

    Article  CAS  Google Scholar 

  121. Kulesza PJ, Malik MA, Denca A, Strojek J (1996) In situ FT-IR/ATR spectroelectrochemistry of Prussian blue in the solid state. Anal Chem 68:2442–2446

    Article  CAS  Google Scholar 

  122. Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res 19:162–168

    Article  CAS  Google Scholar 

  123. Pyrasch M, Toutianoush A, Jin W, Schnepf J, Tieke B (2003) Self-assembled films of Prussian blue and analogues: optical and electrochemical properties and application as ion-sieving membranes. Chem Mater 15:245–254

    Article  CAS  Google Scholar 

  124. Imanishi N, Morikawa T, Kondo J, Takeda Y, Yamamoto O, Kinugasa N, Yamagishi T (1999) Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery. J Power Sources 79:215–219

    Article  CAS  Google Scholar 

  125. Kulesza PJ, Zamponi S, Malik MA, Miecznikowski K, Berrettoni M, Marassi R (1997) Spectroelectrochemical identity of Prussian blue films in various electrolytes: comparison of time-derivative voltabsorptometric responses with conventional cyclic voltammetry. J Solid State Electrochem 1:88–93

    Article  CAS  Google Scholar 

  126. Domenech A, Montoya N, Scholz F (2011) Estimation of individual Gibbs energies of cation transfer employing the insertion electrochemistry of solid Prussian blue. J Electroanal Chem 657:117–122

    Article  CAS  Google Scholar 

  127. Scholz F, Dostal A (1995) The formal potentials of solid metal hexacyanometalates. Angew Chem Int Ed 34:2685–2687

    Article  CAS  Google Scholar 

  128. Song J, Wang L, Lu Y, Liu J, Guo B, Xiao P, Lee J-J, Yang X-Q, Henkelman G, Goodenough JB (2015) Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J Am Chem Soc 137:2658–2664

    Article  CAS  PubMed  Google Scholar 

  129. Wu X, Luo Y, Sun M, Qian J, Cao Y, Ai X, Yang H (2015) Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-Ion batteries. Nano Energy 13:117–123

    Article  CAS  Google Scholar 

  130. Yang D, Xu J, Liao X-Z, Wang H, He Y-S, Ma Z-F (2015) Prussian blue without coordinated water as superior cathode for sodium-ion batteries. Chem Comm 51:8181–8184

    Article  CAS  PubMed  Google Scholar 

  131. Kuperman N, Padigi P, Goncher G, Evans D, Thiebes J, Solanki R (2017) High performance Prussian blue cathode for nonaqueous Ca-ion intercalation battery. J Power Sources 342:414–418

    Article  CAS  Google Scholar 

  132. Kim D-M, Kim Y, Arumugam D, Woo SW, Jo YN, Park M-S, Kim Y-J, Choi N-S, Lee KT (2016) Co-intercalation of Mg2+ and Na+ in Na0.69Fe2(CN)6 as a high-voltage cathode for magnesium batteries. ACS Appl Mater Interfaces 8:8554–8560

    Article  CAS  PubMed  Google Scholar 

  133. Liu S, Pan GL, Li GR, Gao XP (2015) Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. J Mater Chem A 3:959–962

    Article  CAS  Google Scholar 

  134. Ruankaew N, Yoshida N, Watanabe Y, Nakano H, Phongphanphanee S (2017) Size-dependent adsorption sites in a Prussian blue nanoparticle: A 3D-RISM study. Chem Phys Lett 684:117–125

    Article  CAS  Google Scholar 

  135. Hamnett A, Higgins S, Mortimer RJ, Rosseinsky DR (1988) A study of the electrodeposition and subsequent potential cycling of Prussian blue films using ellipsometry. J Electroanal Chem 255:315–324

    Article  CAS  Google Scholar 

  136. Ganguli S, Bhattacharya M (1983) Studies of different hydrated forms of Prussian blue. J Chem Soc Fraraday Trans 1(79):1513–1522

    Article  Google Scholar 

  137. Bal B, Ganguli S, Bhattacharya M (1984) Bonding of water molecules in Prussian blue. A differential thermal analysis and nuclear magnetic resonance study. J Phys Chem 88:4575–4577

    CAS  Google Scholar 

  138. Marcus Y (2012) Volumes of aqueous hydrogen and hydroxide ions at 0 to 200 °C. J Chem Phys 137:154501

    Article  PubMed  Google Scholar 

  139. Takahashi A, Tanaka H, Kawamoto T (2019) Prussian blue nanoparticles and nanocomposites for Cs decontamination. In: Guari Y, Larionova J (eds) Prussian blue nanoparticles and nanocomposites: Synthesis, devices and applications. Pan Stanford Publishing, Singapore, pp 217–242

    Chapter  Google Scholar 

  140. Fujita H, Miyajima R, Sakoda A (2015) Limitation of adsorptive penetration of cesium into Prussian blue crystallite. Adsorption 21:195–204

    Article  CAS  Google Scholar 

  141. Thompson DF, Church CO (2001) Prussian blue for treatment of radiocesium poisoning. Pharmacotherapy 21:1364–1367

    Article  CAS  PubMed  Google Scholar 

  142. Ishizaki M, Akiba S, Ohtani A, Hoshi Y, Ono K, Matsuba M, Togashi T, Kananizuka K, Sakamoto M, Takahashi A, Kawamoto T, Tanaka H, Watanabe M, Arisaka M, Nankawa T, Kurihara M (2013) Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans 42:16049–16055

    Article  CAS  PubMed  Google Scholar 

  143. Takahashi A, Tanaka H, Minami K, Keiko Noda K, Ishizaki M, Kurihara M, Ogawa H, Kawamoto T (2018) Unveiling Cs-adsorption mechanism of Prussian blue analogs: Cs+-percolation via vacancies to complete dehydrated state. RSC Adv 8:34808–34816

    Article  CAS  Google Scholar 

  144. Ikeshoji T, Iwasaki T (1988) In situ x-ray diffraction measurement of Prussian blue modified electrode. Inorg Chem 27:1123–1124

    Article  CAS  Google Scholar 

  145. Lee H, Yang H, Kim YT, Kwak J (2000) Anion transport in Prussian blue films in acetonitrile and propylene carbonate solutions. J Electrochem Soc 147:3801–3807

    Article  CAS  Google Scholar 

  146. Ono K, Ishizaki M, Kanaizuka K, Togashi T, Yamada T, Kitagawa H, Kurihara M (2017) Grain-boundary-free super-proton conduction of a solution-processed Prussian-blue nanoparticle film. Angew. Chem. Int. Ed. 56:5531–5535

    Article  CAS  Google Scholar 

  147. John SA, Ramaraj R (1995) Role of acidity on the electrochemistry of Prussian blue at plain and nafion film coated electrodes. Proc Indian Acad Sci (Chem Sci) 107:371–383

    Article  CAS  Google Scholar 

  148. Sone Y, Kishimoto A, Kudo T, Ikeda K (1996) Reversible electrochromic performance of Prussian blue coated with proton conductive Ta2O5·nH2O film. Solid State Ionics 83:135–143

    Article  CAS  Google Scholar 

  149. Zakharchuk NF, Meyer B, Henning H, Scholz F, Jaworksi A, Stojek Z (1995) A comparative study of Prussian-blue-modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized Prussian Blue. J Electroanal Chem 398:23–35

    Article  Google Scholar 

  150. Ishizaki M, Ando H, Yamada N, Tsumoto K, Ono K, Sutoh H, Nakamura T, Nakao Y, Kurihara M (2019) Redox-coupled alkali-metal ion transport mechanism in binder-free films of Prussian blue nanoparticles. J Mater Chem A 7:4777–4787

    Article  CAS  Google Scholar 

  151. Kraft A (2018) What a chemistry student should know about the history of Prussian blue. ChemTexts 4:16

    Article  Google Scholar 

  152. Kraft A (2019) The history of Prussian blue. In: Guari Y, Larionova J (eds) Prussian blue nanoparticles and nanocomposites: Synthesis, devices and applications. Pan Stanford Publishing, Singapore, pp 1–26

    Google Scholar 

  153. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The different drawings of the Prussian blue lattices were produced by the author by use of the program VESTA [153]. Thanks to the Corona crisis, I had the time to dive deep into the ocean of published research on Prussian blue and to write this article.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kraft.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraft, A. Some considerations on the structure, composition, and properties of Prussian blue: a contribution to the current discussion. Ionics 27, 2289–2305 (2021). https://doi.org/10.1007/s11581-021-04013-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04013-0

Navigation