Skip to main content

Advertisement

Log in

Organic geochemical and petrological evaluation to assess the remaining hydrocarbon potential and depositional conditions: a case study of the Paleozoic shales of west Perlis region, northern Peninsular Malaysia

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The shale samples of the Timah Tasoh Formation that deposited during the Early Devonian in Perlis, northern Peninsular Malaysia, have been investigated by utilising organic geochemical and petrological methods as well as elemental compositions. The shale samples were examined to assess the origin, type, and conditions of the paleodepositional environment during the sediment deposition and explore the gas-generating potential from the conversion of bitumen to gas from the more profound and older Paleozoic strata. Biomarker study indicates a mixed terrestrial-derived organic matter input with significant influences from lacustrine and marine-derived (marine phytoplanktonic-bacteria) land-plants organic matter deposited in a transitional environment (terrestrial to marine) under a suboxic condition. The ratio of trace elements concentration (e.g. Sr, Ba, V, Ni, Cr) established that the organic material was preserved under suboxic to oxic conditions. The analysis from the Rock–Eval pyrolysis indicates poor to very good hydrocarbon source potentials. However, evaluation based on bulk pyrolysis shows that the Timah Tasoh Formation contains a low hydrogen index (HI), suggesting that the organic matter is dominated by type IV kerogen, corroborated by the high vitrinite reflectance values. It indicates that the analysed samples are already in the stage of late mature to overmature and thus within a gas generation window. The solid bitumen within samples suggests that the Timah Tasoh Formation had prominent organic matter content for liquid hydrocarbon generation before a thick overburden rock and high thermal temperature occurred at the beginning of the deposition. During Late Cretaceous time transformed the primary organic matter kerogens of types II and III (that initially generated liquid hydrocarbons) into type IV kerogen, generating thermogenic gas potential by the process of secondary cracking source rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ayinla HA, Abdullah WH, Makeen YM, Abubakar M, Jauro A, Yandoka BM, Abidin NS (2017) Source rock characteristics, depositional setting and hydrocarbon generation potential of Cretaceous coals and organic-rich mudstones from Gombe Formation, Gongola Sub-basin, Northern Benue Trough, NE Nigeria. Int J Coal Geol 173:212–226

    Article  Google Scholar 

  • Azman AG (2009) Plutonism. In: Hutchinson CS, Tan DNK (eds) Geology of Peninsular Malaysia. University of Malaya and Geological Society of Malaysia, Kuala Lumpur, pp 211–232

    Google Scholar 

  • Baioumy H, Ulfa Y, Nawawi M, Padmanabhan E, Anuar MN (2016) Mineralogy and geochemistry of Palaeozoic black shales from Peninsular Malaysia: Implications for their origin and maturation. Int J Coal Geol 165:90–105

    Article  Google Scholar 

  • Barwise AJG (1990) Role of nickel and vanadium in petroleum classification. Energy Fuels 4:647–652

    Article  Google Scholar 

  • Basori MBI, Leman MS, Zaw K, Meffre S, Large RR, Mohamed KR, Zin MM (2018) Implications of U-Pb detrital zircon geochronology analysis for the depositional age, provenance, and tectonic setting of continental Mesozoic formations in the East Malaya Terrane. Peninsular Malaysia Geological Journal 53(6):2908–2917

    Google Scholar 

  • Beckmann B, Flögel S, Hofmann P, Schulz M, Wagner T (2005) Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response. Nature 437(7056):241–244

    Article  Google Scholar 

  • Behar F, Beaumont V, Penteado HLDB (2015) Rock-Eval 6 technology: performances and developments. Oil Gas Sci Technol 56:111–134

    Article  Google Scholar 

  • Bertrand R (1993) Standardization of solid bitumen reflectance to vitrinite in some Paleozoic sequences of Canada. Energy Sources 15:269–287

    Article  Google Scholar 

  • Bordenave ML (1993) Applied petroleum, geochemistry. Technip, Paris

    Google Scholar 

  • Botor D, Golonka J, Zając J, Papiernik B, Guzy P (2019) Petroleum generation and expulsion in the Lower Palaeozoic petroleum source rocks at the SW margin of the East European Craton (Poland). Annales Societatis Geologorum Poloniae.

  • Boucot AJ, Johnson JG, Racheboeuf PR (1999) Early Devonian brachiopods from Saturn Province, southern Thailand. J Paleontol 73(5):850–859

    Article  Google Scholar 

  • Brett CE, Baird GC (1993) Taphonomic approaches to temporal resolution in stratigraphy. In Kidwell, S.M., and Behrensmeyer, A.K. (eds.), Taphonomic Approaches to Time Resolution in Fossil Assemblages. Paleontological Society Short Course 6, 250–274.

  • Burton C (1970) The palaeotectonic status of the Malay Peninsula. Palaeogeogr Palaeoclimatol Palaeoecol 7(1):51–60

    Article  Google Scholar 

  • Cardott BJ, Landis CR, Curtis ME (2015) Post-oil solid bitumen network in the Woodford Shale, USA — a potential primary migration pathway. Int J Coal Geol 139:106–113

    Article  Google Scholar 

  • Cocks L, Fortey R, Lee C (2005) A review of Lower and Middle Palaeozoic biostratigraphy in west peninsular Malaysia and southern Thailand in its context within the Sibumasu Terrane. J Asian Earth Sci 24(6):703–717

    Article  Google Scholar 

  • Dai J, Zou C, Liao S, Dong D, Ni Y, Huang J, Hu G (2014) Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Org Geochem 74:3–12

    Article  Google Scholar 

  • Dardour AM, Boote DRD, Baird AW (2004) Stratigraphic controls on Paleozoic petroleum systems, Ghadames Basin. Libya Journal of Petroleum Geology 27(2):141–162

    Article  Google Scholar 

  • Deaton JW, Branton SL, Simmons JD, Lott BD (1996) The effect of brooding temperature on broiler performance. Poult Sci 75(10):1217–1220

    Article  Google Scholar 

  • Espitalie J, Madec M, Tissot B, Mennig J, Leplat P (1977) Source rock characterization method for petroleum exploration. Offshore Technology Conference.

  • Espitalie J, Deroo G, Marquis F (1985) Rock-Eval pyrolysis and its application, Inst. Fr. Petrol, 72.

  • Etiope G, Christodoulou D, Kordella S, Marinaro G, Papatheodorou G (2013) Offshore and onshore seepage of thermogenic gas at Katakolo Bay (Western Greece). Chem Geol 339:115–126

    Article  Google Scholar 

  • Ferreiro Mählmann R, Bayon RL (2016) Vitrinite and vitrinite like solid bitumen reflectance in thermal maturity studies: Correlations from diagenesis to incipient metamorphism in different geodynamic settings. Int J Coal Geol 157:52–73

    Article  Google Scholar 

  • Foo KY (1983) The Paleozoic sedimentary rocks of Peninsular Malaysia-stratigraphy and correlation. Proceedings of the Workshop on Stratigraphic Correlation of Thailand and Malaysia 1:1–19

    Google Scholar 

  • Fu X, Wang J, Zeng Y, Cheng J, Tano F (2011) Origin and mode of occurrence of trace elements in marine oil shale from the Shengli River Area, Northern Tibet. China Oil Shale 28(4):487–506

    Article  Google Scholar 

  • Fuan F (1991) Geochemical characteristics of type IV kerogen from lower paleozoic source rocks in the lower Yangtze area. J SE Asian Earth Sci 5(1–4):39–42

    Article  Google Scholar 

  • Galarraga F, Reategui K, Martïnez A, Martínez M, Llamas J, Márquez G (2008) V/Ni ratio as a parameter in palaeoenvironmental characterisation of nonmature medium-crude oils from several Latin American basins. J Petrol Sci Eng 61(1):9–14

    Article  Google Scholar 

  • Gasparrini M, Sassi W, Gale JF (2014) Natural sealed fractures in mudrocks: a case tudy tied to burial history from the Barnett Shale, Fort Worth Basin, Texas, USA. Mar Pet Geol 55:122–141

    Article  Google Scholar 

  • Ghani AA, Searle M, Robb L, Chung S (2013) Transitional I S type characteristic in the Main Range Granite, Peninsular Malaysia. J Asian Earth Sci 76:225–240

    Article  Google Scholar 

  • Hackley PC, Cardott BJ (2016) Application of organic petrography in North American shale petroleum systems: a review. Int J Coal Geol 163:8–51

    Article  Google Scholar 

  • Hakimi MH, Abdullah WH (2013) Organic geochemical characteristics and oil generating potential of the Upper Jurassic Safer shale sediments in the Marib-Shabowah Basin, western Yemen. Org Geochem 54:115–124

    Article  Google Scholar 

  • Hakimi MH, Abdullah WH, Shalaby MR (2011) Organic geochemical characteristics of crude oils from the Masila Basin, eastern Yemen. Org Geochem 42(5):465–476

    Article  Google Scholar 

  • Hakimi MH, Abdullah WH, Alqudah M, Makeen YM, Mustapha KA (2016) Organic geochemical and petrographic characteristics of the oil shales in the Lajjun area, Central Jordan: origin of organic matter input and preservation conditions. Fuel 181:34–45

    Article  Google Scholar 

  • Hakimi MH, Ahmed A, Mogren S, Shah SB, Kinawy MM, Lashin AA (2020) Thermogenic gas generation from organic-rich shales in the southeastern Say’un-Masila Basin, Yemen as demonstrated by geochemistry, organic petrology, and basin modelling. J Pet Sci Eng 192:107322

    Article  Google Scholar 

  • Hassan MH (2013) Facies Analysis of the Uppermost Kubang Pasu Formation, Perlis: a wave-and storm-influenced coastal depositional system. Sains Malaysiana 42:1091–1100

    Google Scholar 

  • Hassan MH, Lee CP (2005) The Devonian-Lower Carboniferous succession in Northwest Peninsular Malaysia. J Asian Earth Sci 24(6):719–738

    Article  Google Scholar 

  • Hassan MH, Aung A, Becker R, Rahman NA, Ng TF, Ghani AA, Shuib MK (2014) Stratigraphy and palaeoenvironmental evolution of the mid-to-upper Palaeozoic succession in Northwest Peninsular Malaysia. J Asian Earth Sci 83:60–79

    Article  Google Scholar 

  • Hassan MH, Erdtmann BD, Wang-Xiaofeng, Peng LC (2013) Early Devonian graptolites and tentaculitids in northwest Peninsular Malaysia and a revision of the Devonian–Carboniferous stratigraphy of the region. Alcheringa: An Australasian Journal of Palaeontology, 37(1) 49-63

  • Huang W, Meinschein W (1979) Sterols as ecological indicators. Geochim Cosmochim Acta 43(5):739–745

    Article  Google Scholar 

  • Hughes WB, Holba AG, Dzou LIP (1995) The ratio of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum in source rocks. Geochim Cosmochim Acta 59:3581–3598

    Article  Google Scholar 

  • Hunt JM (1996) Petroleum geochemistry and geology, 2nd edn. Freeman, San Francisco, W. H., p 743

    Google Scholar 

  • Jacob H (1989) Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”). Int J Coal Geol 11(1):65–79

    Article  Google Scholar 

  • Jarvie DM, Hill RJ, Ruble TE, Pollastro RM (2007) Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull 91(4):475–499

    Article  Google Scholar 

  • Jones CR (1973) The Siluro-Devonian graptolite faunas of the Malay Peninsula. Overseas Geology and Mineral Resources 44:25

    Google Scholar 

  • Jones CR (1981) The geology and mineral resources of Perlis, North Kedah and the Langkawi Island. Geological Survey Malaysia District Memoir 17:1–257

    Google Scholar 

  • Jones B, Manning DA (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111(1–4):111–129

    Article  Google Scholar 

  • Khoo TT, Tan BK (1983) Geological evolution of Peninsular Malaysia. proceeding of workshop on stratigraphic correlation of Thailand and Malaysia, I: Technical papers, Geological Society of Malaysia, 253–290.

  • Landis CR, Castaño JR (1995) Maturation and bulk chemical properties of a suite of solid hydrocarbons. Org Geochem 22(1):137–149

    Article  Google Scholar 

  • Lee CP (2001) The occurrence of Scyphocrinites lobolith in the Upper Silurian Upper Setul limestone of Pulau Langgun, Langkawi, Kedah and Guar Senai, Berseri, Perlis. Annual Geological Conference, 2001.

  • Lee CP (2009) Paleozoic stratigraphy. In: Hutchinson CS, Tan DNK (eds) Geology of Peninsular Malaysia. University of Malaya and Geological Society of Malaysia, Kuala Lumpur, pp 55–86

    Google Scholar 

  • Lee CP, Leman MS, Hassan K, Nasib BM, Karim R (2004) Stratigraphic lexicon of Malaysia. Geological Society of Malaysia, Kuala Lumpur, p 162

    Google Scholar 

  • Lewan MD, Henry AA (2001) Gas: oil ratios for source rocks containing Type-I, -II, -IIS and -III kerogens as determined by hydrous pyrolysis. In: Dyman, T.S., Kuuskraa, V.A. (Eds.) Geologic Studies of Deep Natural Gas Resources. U.S. Geological Survey.

  • Liu B, Schieber J, Mastalerz M (2017) Combines SEM and reflected light petrography of organic matter in the New Albany shale: a prospective on organic porosity development with thermal maturation. Int J Coal Geol 184:57–72

    Article  Google Scholar 

  • Liu B, Schieber J, Mastalerz M (2019) Petrographic and micro-FTIR study of organic matter in the Upper Devonian New Albany shale during thermal maturation: implications for Kerogen transformation. Memoir 120: Mudstone Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks, 165–188.

  • MacDonald R, Hardman D, Sprague R, Meridji Y, Mudjiono W, Galford J, Rourke M, Dix M, Kelto M (2010) Using elemental geochemistry to improve sandstone reservoir characterization: a case study from the Unayzah interval of Saudi Arabia. In: SPWLA 51st Annual Logging Symposium, 1–16.

  • Madon M (1993) Overview of the structural evolution of the Malay and Penyu basins. PETRONAS Research & Scientific Services, Project 123/92, Report No. RP5–93–02 (unpublished).

  • Maeyama D, Suzuki N, Kazukawa K, Ando H (2020) Residual gas in extensive stratified Miocene Izura carbonate concretions exhibiting thermogenic origin and isotopic fractionation associated with carbonate precipitation. Marine and Petroleum Geology, 119, 104466.

  • Makeen YM, Abdullah WH, Hakimi MH, Mustapha KA (2015) Source rock characteristics of the Lower Cretaceous Abu Gabra Formation in the Muglad Basin, Sudan, and its relevance to oil generation studies. Mar Pet Geol 59:505–516

    Article  Google Scholar 

  • Makeen YM, Abdullah WH, Ayinla HA, Shan X, Liang Y, Su S, Asiwaju L (2019) Organic geochemical characteristics and depositional setting of Paleogene oil shale, mudstone and sandstone from onshore Penyu Basin, Chenor, Pahang, Malaysia. Int J Coal Geol 207:52–72

    Article  Google Scholar 

  • Mastalerz M, Drobniak A, Stankiewicz AB (2018) Origin, properties, and implications of solid bitumen in source-rock reservoirs: a review. Int J Coal Geol 195:14–36

    Article  Google Scholar 

  • Maynard JB, Valloni R, Yu H (1982) Composition of modern deep-sea sands from arc-related basins. Geol Soc Lond Spec Publ 10(1):551–561

    Article  Google Scholar 

  • McCarthy K, Rojas K, Niemann M, Palmowski D, Peters K, Stankiewicz A (2011) Basic petroleum geochemistry for source rock evaluation. Oilf Rev 23:32–43

    Google Scholar 

  • Merril RK (1991) Source and migration processes and evaluation techniques (R.K., Merril, ed.), American Association of Petroleum Geologists, Tulsa, Oklahoma.

  • Metcalfe I (1988) Origin and assembly of southeast Asian continental terranes. In Audley-Charles MG, Hallam A (eds) Gondwana and tethys. Geological Society of London Special Publication, 37, pp 101–118

  • Metcalfe I (2013) Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. J Asian Earth Sci 66:1–33

    Article  Google Scholar 

  • Metcalfe I (2013) Tectonic evolution of the Malay peninsula. J Asian Earth Sci 76:195–213

    Article  Google Scholar 

  • Metcalfe I (2017) Tectonic evolution of Sundaland. Bull Geol Soc Malaysia 63:27–60

    Article  Google Scholar 

  • Moldowan JM, Sundararaman P, Schoell M (1986) Sensitivity of biomarker properties to depositional environment and/ or source input in the Lower Toarcian of S.W.Germany. Org Geochem 10:915–926

    Article  Google Scholar 

  • Newport Leo P, Aplin AC, Gluyas JG, Chris Greenwell H, Gröcke DR (2016) Geochemical and lithological controls on a potential shale reservoir: Carboniferous Holywell Shale, Wales. Mar Pet Geol 71:198–210

    Article  Google Scholar 

  • Nugraheni R, Sum C, Rahman AA (2013) A review of shale gas prospects from non-marine shales in Indonesia and Malaysia - a new beginner in shale gas play. London 2013, 75th Eage Conference En Exhibition Incorporating SPE Europec.

  • Peters KE, Moldowan JM (1993) The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments. Prentice-Hall Inc, Eaglewood Cliffs, New Jersey

    Google Scholar 

  • Peters KE, Clark ME, das Gupta U, McCaffrey MA, Lee CY (1995) Recognition of an Infracambrian source based on biomarkers in the Bagehwala-1 oil, India. AAPG Bull 79:1481–1494

    Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Peters KE, Cassa MR (1994) Applied source rock geochemistry. In: Magoon, I.B., Dow, W.G., (Eds.), The petroleum system-from source to trap. American Association of Petroleum Geologist Memoir, 60, 93–120.

  • Pytlak L, Gross D, Sachsenhofer R, Bechtel A, Gratzer R, Linzer H (2016) Generation, mixing and alteration of thermogenic and microbial gas in oil deposits: the case of the Alpine Foreland Basin (Austria). Mar Pet Geol 78:575–592

    Article  Google Scholar 

  • Radke M (1987) Organic geochemistry of aromatic hydrocarbons. In: Brooks J, Welde D (eds) Advances in Petroleum Geochemistry, vol 2. Academic Press, London, pp 141–205

    Google Scholar 

  • Radke M, Welte DH, Willsch H (1986) Maturity parameters based on aromatic hydrocarbons: influence of the organic matter type. Org Geochem 10:51–63

    Article  Google Scholar 

  • Ratcliffe KT, Wright AM, Hallsworth C, Morton A, Zaitlin BA, Potocki D, Wray DS (2004) An example of alternative correlation techniques in a low-accommodation setting, nonmarine hydrocarbon system: the (Lower Cretaceous) Mannville Basal Quartz succession of southern Alberta. AAPG Bull 88(10):1419–1432

    Article  Google Scholar 

  • Rippen D, Littke R, Bruns B, Mahlstedt N (2013) Organic geochemistry and petrography of Lower Cretaceous Wealden black shales of the Lower Saxony Basin: the transition from lacustrine oil shales to gas shales. Org Geochem 63:18–36

    Article  Google Scholar 

  • Rooney MA, Claypool GE, Chung HM (1995) Modelling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem Geol 126(3–4):219–232

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94(5):635–650

    Article  Google Scholar 

  • Ross DJK, Bustin RM (2009) The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar Pet Geol 26:916–927

    Article  Google Scholar 

  • Roy DK, Roser BP (2013) Climatic control on the composition of Carboniferous Permian Gondwana sediments, Khalaspir basin. Bangladesh Gondwana Research 23(3):1163–1171

    Article  Google Scholar 

  • Scrivenor JB (1928) The geology of Malaysian ore deposits. MacMillan Press, London, p 216

    Google Scholar 

  • Scrotchman IC (2016) Shale gas and fracking: exploration for unconventional hydrocarbons. Proc Geol Assoc 127:535–551

    Article  Google Scholar 

  • Seifert WK, Moldowan JM (1979) The effect of biodegradation on steranes and terpanes in crude oils. Geochim Cosmochim Acta 43(1):111–126

    Article  Google Scholar 

  • Seifert WK, Moldowan JM (1986) Use of biological markers in petroleum exploration. In: Johns RB (ed) Methods in Geochemistry and Geophysics, vol 24. Elsevier, Amsterdam, pp 261–290

    Google Scholar 

  • Sinninghe Damsté JS, Kenig F, Koopmans MP, Köster J, Schouten S, Hayes JM, de Leeuw JW (1995) Evidence for Gammacerane as an indicator of water column stratification. Geochimica Et Cosmochimica Acta 59(9):1895–1900

    Article  Google Scholar 

  • Soua M (2014) Paleozoic oil/gas shale reservoirs in southern Tunisia: an overview. J Afr Earth Sc 100:450–492

    Article  Google Scholar 

  • Staplin FL (1969) Sedimentary organic matter, organic metamorphism, and oil and gas occurrence. Bull Can Pet Geol 17(1):47–66

    Google Scholar 

  • Staufer PH, Mantajit N (1981) Late paleozoic tilloids of Malaya, Thailand and Burma. In: Hambrey MJ, Halland WB (eds) Earth’s pre-Pleistocene glacial record. Cambridge University Press, pp 331–337

    Google Scholar 

  • Suttner LJ, Dutta PK (1986) Alluvial sandstone composition and paleoclimate. 1. Framework mineralogy. SEPM Journal of Sedimentary Research 56:329–345

    Google Scholar 

  • Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull 74:1559–1570

    Google Scholar 

  • Ten Haven HL, de Leeuw JW, Rullkotter J, Sinnighe Damste JS (1987) Restricted utility of the pristane/phytane ratio as a paleoenvironmental indicator. Nature 330:641–643

    Article  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Tjia HD (1998) Origin and tectonic development of Malay-Penyu-West Natuna basins. Bull Geol Soc Malaysia 42:147–160

    Article  Google Scholar 

  • Tourtelot Harry A (1979) Black shale - its deposition and diagenesis 1. Clays Clay Miner 27(5):313–321

    Article  Google Scholar 

  • Tunstall T (2015) Iterative bass model forecasts for unconventional oil production in the Eagle Ford Shale. Energy 93:580–588

    Article  Google Scholar 

  • Vanhazebroeck E, Borrok DM (2016) A new method for the inorganic geochemical evaluation of unconventional resources: an example from the Eagle Ford Shale. J Nat Gas Sci Eng 33:1233–1243

    Article  Google Scholar 

  • Waliczek M, Machowski G, Więcław D, Konon A, Wandycz P (2019) Properties of solid bitumen and other organic matter from Oligocene shales of the Fore-Magura Unit in Polish Outer Carpathians: microscopic and geochemical approach. Int J Coal Geol 210:103206

    Article  Google Scholar 

  • Waples DW, Machihara T (1991) Biomarkers for geologist-a practical guide to the application of steranes and triterpanes in petroleum geology. Association of Petroleum Geologist. Methods in Exploration No.9, 91.

  • Welte D, Yalçin M (1988) Basin modelling—a new comprehensive method in petroleum geology. Organic Geochemistry In Petroleum Exploration, 141–151.

  • Xiong Y, Zhang L, Chen Y, Wang X, Li Y, Wei M, Lei R (2016) The origin and evolution of thermogenic gases in organic-rich marine shales. J Petrol Sci Eng 143:8–13

    Article  Google Scholar 

  • Zonneveld KA, Versteegh GJ, Kasten S, Eglinton TI, Emeis K, Huguet C, Wakeham SG (2010) Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences 7(2):483–511

    Article  Google Scholar 

  • Zou C, Yang Z, Zhang G, Hou L, Zhu R, Tao S, Wu N (2014) Conventional and unconventional petroleum “orderly accumulation”: concept and practical significance. Pet Explor Dev 41(1):14–30

    Article  Google Scholar 

  • Zou C, Yang Z, Dai J, Dong D, Zhang B, Wang Y, Pan S (2015) The characteristics and significance of conventional and unconventional Sinian-Silurian gas systems in the Sichuan Basin, central China. Mar Pet Geol 64:386–402

    Article  Google Scholar 

  • Zou C, Zhu R, Chen ZQ, Ogg JG, Wu S, Dong D, Zhen Q, Wang Y, Wang L, Lin S, Cui J, Su L, Yang Z (2019) Organic-matter-rich shales of China. Earth Sci Rev 189:51–78

    Article  Google Scholar 

  • Zumberge J, Ferworn K, Brown S (2012) Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations. Mar Pet Geol 31(1):43–52

    Article  Google Scholar 

Download references

Acknowledgements

The authors take on the opportunity to acknowledge the management of the Department of Geology, the University of Malaya, for providing the facilities for the organic petrology and geochemistry analyses.

Funding

The authors are also very grateful for the financial support provided by the Ministry of Higher Education, Malaysia, through research grant number FP045-2017A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jasmi Hafiz Abdul Aziz or Yousif M. Makeen.

Additional information

Responsible Editor: Santanu Banerjee

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Please see Table

Table 4 The peak abbreviations from saturated fractions in the m/z 191 (I) and 217 (II)

4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghofur, M.N.A., Aziz, J.H.A., Makeen, Y.M. et al. Organic geochemical and petrological evaluation to assess the remaining hydrocarbon potential and depositional conditions: a case study of the Paleozoic shales of west Perlis region, northern Peninsular Malaysia. Arab J Geosci 15, 1070 (2022). https://doi.org/10.1007/s12517-022-09764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-09764-2

Keywords

Navigation