Skip to main content
Log in

The origin of galactic cosmic rays

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

Thanks to advances in \(\gamma\)-ray astronomy and precise measurements of cosmic ray (CR) properties, the last decade has witnessed significant progresses in our understanding of the origin of Galactic CRs. In particular, GeV CRs have been associated with supernova remnants (SNRs) with soft \(\gamma\)-ray spectra, while there is evidence of efficient TeV CR acceleration in SNRs with hard \(\gamma\)-ray spectra. Nevertheless, no ultra-high-energy (>50 TeV) \(\gamma\)-ray emission has been detected from shocks of SNRs, implying their limited contributions to PeV CR fluxes. Most ultra-high-energy \(\gamma\)-ray sources detected so far can be associated with pulsar wind nebulae (PWNe), that are known PeV electron/positron accelerators. Their contributions to PeV CRs are still a matter of debate. The Galactic center region and some star clusters, on the other hand, are known sources of PeV CRs. Detailed modelings of CR spectra and anisotropy show that the supernova that gave rise to the Geminga pulsar may have significant contributions to TeV CR fluxes, and PeV CRs should have significant contributions from source(s) in the direction of the Galactic center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Bremsstrahlung emission of electrons is always lower than that from hadronic processes above 0.1 GeV for the fixed ratio of electron to proton flux (Yuan et al. 2012).

  2. The \(\gamma\)-ray SNR with nonthermal X-ray emission Tycho is not studied here, since its GeV \(\gamma\)-ray spectrum is soft.

  3. The MCMC code is CosRayMC (Liu et al. 2012) adapted from the COSMOMC package (Lewis and Bridle 2002)

References

  • M.G. Aartsen, K. Abraham, M. Ackermann et al., ApJ 826, 220 (2016)

    ADS  Google Scholar 

  • M.G. Aartsen, M. Ackermann, J. Adams et al., Phys. Rev. Lett. 124, 051103 (2020)

    ADS  Google Scholar 

  • A.A. Abdo, B. Allen, D. Berley et al., ApJ 664, L91 (2007)

    ADS  Google Scholar 

  • A.A. Abdo, B.T. Allen, T. Aune et al., ApJ 700, L127 (2009)

    ADS  Google Scholar 

  • A.A. Abdo, M. Ackermann, M. Ajello et al., ApJ 710, L92 (2010a)

    ADS  Google Scholar 

  • A.A. Abdo, M. Ackermann, M. Ajello et al., Science 327, 1103 (2010b)

    ADS  Google Scholar 

  • S. Abdollahi, F. Acero, M. Ackermann et al., ApJS 247, 33 (2020)

    ADS  Google Scholar 

  • A.U. Abeysekara, A. Albert, R. Alfaro et al., Science 358, 911 (2017)

    ADS  Google Scholar 

  • A.U. Abeysekara, A. Archer, T. Aune et al., ApJ 861, 134 (2018)

    ADS  Google Scholar 

  • A.U. Abeysekara, A. Albert, R. Alfaro et al., Phys. Rev. Lett. 124, 021102 (2020)

    ADS  Google Scholar 

  • A.U. Abeysekara, A. Albert, R. Alfaro, et al., Nat. Astron. arXiv:2103.06820 (2021)

  • V.A. Acciari, E. Aliu, T. Arlen et al., ApJ 703, L6 (2009)

    ADS  Google Scholar 

  • V.A. Acciari, E. Aliu, T. Arlen et al., ApJ 714, 163 (2010)

    ADS  Google Scholar 

  • M. Ackermann, M. Ajello, A. Allafort et al., Science 339, 807 (2013)

    ADS  Google Scholar 

  • M. Aguilar, L. Ali Cavasonza, G. Ambrosi et al., Phys. Rev. Lett. 117, 231102 (2016)

    ADS  Google Scholar 

  • F. Aharonian, R. Yang, E. de Oña Wilhelmi, Nat. Astron. 3, 561 (2019)

    ADS  Google Scholar 

  • M. Ahlers, Phys. Rev. Lett. 117, 151103 (2016)

    ADS  Google Scholar 

  • M. Ahlers, P. Mertsch, Progress Part. Nuclear Phys. 94, 184 (2017)

    ADS  Google Scholar 

  • M.L. Ahnen, S. Ansoldi, L.A. Antonelli et al., MNRAS 472, 2956 (2017)

    ADS  Google Scholar 

  • A. Albert, R. Alfaro, C. Alvarez et al., ApJ 896, L29 (2020)

    ADS  Google Scholar 

  • J. Albert, E. Aliu, H. Anderhub et al., A&A 474, 937 (2007)

    ADS  Google Scholar 

  • F. Alemanno, Q. An, P. Azzarello et al., Phys. Rev. Lett. 126, 201102 (2021)

    ADS  Google Scholar 

  • E. Aliu, S. Archambault, T. Arlen et al., ApJ 770, 93 (2013)

    ADS  Google Scholar 

  • G.E. Allen, M.D. Stage, J.C. Houck, Int. Cosmic Ray Conf. 2, 839 (2008)

    Google Scholar 

  • G.E. Allen, J.W. Keohane, E.V. Gotthelf et al., ApJ 487, L97 (1997)

    ADS  Google Scholar 

  • M. Amenomori, X.J. Bi, D. Chen et al., ApJ 836, 153 (2017)

    ADS  Google Scholar 

  • Q. An, R. Asfandiyarov, P. Azzarello et al., Sci. Adv. 5, eaax3793 (2019)

    ADS  Google Scholar 

  • M. Anderson, L. Rudnick, P. Leppik, R. Perley, R. Braun, ApJ 373, 146 (1991)

    ADS  Google Scholar 

  • M. Araya, W. Cui, ApJ 720, 20 (2010)

    ADS  Google Scholar 

  • W.B. Ashworth Jr., J. Hist. Astron. 11, 1 (1980)

    ADS  Google Scholar 

  • E. Atkin, V. Bulatov, V. Dorokhov et al., Soviet J. Exp. Theor. Phys. Lett. 108, 5 (2018)

    Google Scholar 

  • A.M. Atoyan, F.A. Aharonian, R.J. Tuffs, H.J. Völk, A&A 355, 211 (2000)

    ADS  Google Scholar 

  • A.M. Atoyan, R.J. Tuffs, F.A. Aharonian, H.J. Völk, A&A 354, 915 (2000)

    ADS  Google Scholar 

  • W. Baade, F. Zwicky, Proc. Natl. Acad. Sci. 20, 259 (1934)

    ADS  Google Scholar 

  • J.W.M. Baars, R. Genzel, I.I.K. Pauliny-Toth, A. Witzel, A&A 61, 99 (1977)

    ADS  Google Scholar 

  • B. Bartoli, P. Bernardini, X.J. Bi et al., ApJ 861, 93 (2018)

    ADS  Google Scholar 

  • R.H. Becker, S.S. Holt, B.W. Smith et al., ApJ 234, L73 (1979)

    ADS  Google Scholar 

  • J. Becker Tjus, L. Merten, Phys. Rep. 872, 1 (2020)

    ADS  Google Scholar 

  • A.R. Bell, MNRAS 182, 147 (1978)

    ADS  Google Scholar 

  • A.R. Bell, MNRAS 353, 550 (2004)

    ADS  Google Scholar 

  • A.R. Bell, S.F. Gull, S. Kenderdine, Nature 257, 463 (1975)

    ADS  Google Scholar 

  • A.R. Bell, K.M. Schure, B. Reville, G. Giacinti, MNRAS 431, 415 (2013)

    ADS  Google Scholar 

  • E.G. Berezhko, Astrophys. J. 698, L138 (2009)

    ADS  Google Scholar 

  • J.A.M. Bleeker, R. Willingale, K. van der Heyden et al., A&A 365, L225 (2001)

    ADS  Google Scholar 

  • A.M. Bykov, I. Toptygin, Phys. Uspekhi 36, 1020 (1993)

    ADS  Google Scholar 

  • Z. Cao, F. Aharonian, Q. An et al., ApJ 917, L4 (2021a)

    ADS  Google Scholar 

  • Z. Cao, F. Aharonian, Q. An et al., ApJ 919, L22 (2021b)

    ADS  Google Scholar 

  • Z. Cao, F.A. Aharonian, Q. An et al., Nature 594, 33 (2021c)

    ADS  Google Scholar 

  • A. Coerver, P. Wilcox, H. Zhang et al., ApJ 878, 126 (2019)

    ADS  Google Scholar 

  • A.H. Compton, I.A. Getting, Phys. Rev. 47, 817 (1935)

    ADS  Google Scholar 

  • P. Cristofari, Universe 7, 324 (2021)

    ADS  Google Scholar 

  • A.C. Cummings, E.C. Stone, B.C. Heikkila et al., ApJ 831, 18 (2016)

    ADS  Google Scholar 

  • DAMPE Collaboration, G. Ambrosi, Q. An, et al., Nature 552, 63 (2017)

  • I. De Looze, M.J. Barlow, B.M. Swinyard et al., MNRAS 465, 3309 (2017)

    ADS  Google Scholar 

  • T. DeLaney, L. Rudnick, ApJ 589, 818 (2003)

    ADS  Google Scholar 

  • G. di Sciascio, Lhaaso Collaboration, Nuclear Part. Phys. Proc. 279–281, 166 (2016)

    Google Scholar 

  • L.O. Drury, MNRAS 251, 340 (1991)

    ADS  Google Scholar 

  • Z.H. Fan, S.M. Liu, Q. Yuan, L. Fletcher, A&A 517, L4 (2010)

    ADS  Google Scholar 

  • F. Favata, J. Vink, D. dal Fiume et al., A&A 324, L49 (1997)

    ADS  Google Scholar 

  • E. Fermi, Phys. Rev. 75, 1169 (1949)

    ADS  Google Scholar 

  • M.A. Forman, L.J. Gleeson, Ap&SS 32, 77 (1975)

    ADS  Google Scholar 

  • O. Fornieri, D. Gaggero, D. Guberman et al., Phys. Rev. D 104, 103013 (2021)

    ADS  Google Scholar 

  • S. Gabici, arXiv e-prints, 0, arXiv:2203.14620 (2022)

  • S. Gabici, C. Evoli, D. Gaggero et al., Int. J. Modern Phys. D 28, 1930022 (2019)

    ADS  Google Scholar 

  • X.Y. Gao, J.L. Han, W. Reich et al., A&A 529, A159 (2011)

    ADS  Google Scholar 

  • S. Gerbrandt, T.J. Foster, R. Kothes, J. Geisbüsch, A. Tung, A&A 566, A76 (2014)

    ADS  Google Scholar 

  • A. Giuliani, M. Cardillo, M. Tavani et al., ApJ 742, L30 (2011)

    ADS  Google Scholar 

  • E.V. Gotthelf, B. Koralesky, L. Rudnick et al., ApJ 552, L39 (2001)

    ADS  Google Scholar 

  • B.W. Grefenstette, S.P. Reynolds, F.A. Harrison et al., ApJ 802, 15 (2015)

    ADS  Google Scholar 

  • H.E.S.S. Collaboration, H. Abdalla, A. Abramowski et al., A&A 612, A8 (2018a)

  • H.E.S.S. Collaboration, H. Abdalla, A. Abramowski, et al., A&A 612, A3 (2018b)

  • H.E.S.S. Collaboration, H. Abdalla, F. Aharonian, et al. A&A 627, A100 (2019)

  • E.A. Helder, J. Vink, ApJ 686, 1094 (2008)

    ADS  Google Scholar 

  • E.A. Helder, J. Vink, A.M. Bykov et al., Space Sci. Rev. 173, 369 (2012)

    ADS  Google Scholar 

  • HESS Collaboration, A. Abramowski, F. Aharonian, et al., Nature 531, 476 (2016)

  • C.Y. Hui, K.A. Seo, L.C.C. Lin et al., ApJ 799, 76 (2015)

    ADS  Google Scholar 

  • U. Hwang, J.M. Laming, C. Badenes et al., ApJ 615, L117 (2004)

    ADS  Google Scholar 

  • T. Inoue, A. Marcowith, G. Giacinti, A. Jan van Marle, S. Nishino, ApJ 922, 7 (2021)

  • T. Inoue, R. Yamazaki, S.-I. Inutsuka, ApJ 723, L108 (2010)

    ADS  Google Scholar 

  • T. Inoue, R. Yamazaki, S.-I. Inutsuka, Y. Fukui, ApJ 744, 71 (2012)

    ADS  Google Scholar 

  • O. Krause, S.M. Birkmann, T. Usuda et al., Science 320, 1195 (2008)

    ADS  Google Scholar 

  • P.O. Lagage, C.J. Cesarsky, A&A 125, 249 (1983)

    ADS  Google Scholar 

  • J.M. Laming, U. Hwang, ApJ 597, 347 (2003)

    ADS  Google Scholar 

  • D.A. Leahy, K. Green, S. Ranasinghe, MNRAS 436, 968 (2013)

    ADS  Google Scholar 

  • J.-J. Lee, S. Park, J.P. Hughes, P.O. Slane, ApJ 789, 7 (2014)

    ADS  Google Scholar 

  • A. Lewis, S. Bridle, Phys. Rev. D 66, 103511 (2002)

    ADS  Google Scholar 

  • Lhaaso Collaboration, Z. Cao, F. Aharonian, et al., Science 373, 425 (2021)

  • H. Li, Y. Chen, L. Zhang, MNRAS 408, L80 (2010)

    ADS  Google Scholar 

  • J. Li, R.-Y. Liu, E. de Oña Wilhelmi et al., ApJ 913, L33 (2021)

    ADS  Google Scholar 

  • J. Liu, Q. Yuan, X.-J. Bi, H. Li, X. Zhang, Phys. Rev. D 85, 043507 (2012)

    ADS  Google Scholar 

  • R.-Y. Liu, H. Yan, H. Zhang, Phys. Rev. Lett. 123, 221103 (2019)

    ADS  Google Scholar 

  • S.-M. Liu, H.-D. Zeng, Y.-L. Xin, H. Zhu, ApJ 897, L34 (2020)

    ADS  Google Scholar 

  • W. Liu, X.-J. Bi, S.-J. Lin, B.-B. Wang, P.-F. Yin, Phys. Rev. D 96, 023006 (2017)

    ADS  Google Scholar 

  • W. Liu, Y.-Q. Guo, Q. Yuan, J. Cosmol. Astropart. Phys. 2019, 010 (2019)

    Google Scholar 

  • Y. Maeda, Y. Uchiyama, A. Bamba et al., PASJ 61, 1217 (2009)

    ADS  Google Scholar 

  • MAGIC Collaboration, M.L. Ahnen, S. Ansoldi, et al., ArXiv e-prints, arXiv:1707.01583 (2017)

  • MAGIC Collaboration, V. A. Acciari, S. Ansoldi, et al., arXiv e-prints, arXiv:2010.15854 (2020)

  • A. Marcowith, V.V. Dwarkadas, M. Renaud, V. Tatischeff, G. Giacinti, MNRAS 479, 4470 (2018)

    ADS  Google Scholar 

  • P.G. Mezger, R.J. Tuffs, R. Chini, E. Kreysa, H.-P. Gemuend, A&A 167, 145 (1986)

    ADS  Google Scholar 

  • E.R. Micelotta, E. Dwek, J.D. Slavin, A&A 590, A65 (2016)

    ADS  Google Scholar 

  • F.C. Michel, ApJ 247, 664 (1981)

    ADS  Google Scholar 

  • J.A. Morse, R.A. Fesen, R.A. Chevalier et al., ApJ 614, 727 (2004)

    ADS  Google Scholar 

  • Y. Ohira, K. Ioka, ApJ 729, L13 (2011)

    ADS  Google Scholar 

  • Y. Ohira, S. Kisaka, R. Yamazaki, MNRAS 478, 926 (2018)

    ADS  Google Scholar 

  • Y. Ohira, R. Yamazaki, J. High Energy Astrophys. 13, 17 (2017)

    ADS  Google Scholar 

  • Y. Ohira, R. Yamazaki, N. Kawanaka, K. Ioka, MNRAS 427, 91 (2012)

    ADS  Google Scholar 

  • D.J. Patnaude, R.A. Fesen, ApJ 789, 138 (2014)

    ADS  Google Scholar 

  • J.A. Peacock, MNRAS 196, 135 (1981)

    ADS  Google Scholar 

  • B.D. Piazzoli, S.-M. Liu, D. della Volpe et al., Chin. Phys. C 46, 030004 (2022)

    Google Scholar 

  • S. Profumo, J. Reynoso-Cordova, N. Kaaz, M. Silverman, Phys. Rev. D 97, 123008 (2018)

    ADS  Google Scholar 

  • V.S. Ptuskin, Soviet Astron. Lett. 14, 255 (1988)

    ADS  Google Scholar 

  • B.-Q. Qiao, W. Liu, Y.-Q. Guo, Q. Yuan, J. Cosmol. Astropart. Phys. 2019, 007 (2019)

    Google Scholar 

  • J.E. Reed, J.J. Hester, A.C. Fabian, P.F. Winkler, ApJ 440, 706 (1995)

    ADS  Google Scholar 

  • W. Reich, X.-H. Sun, Res. Astron. Astrophys. 19, 045 (2019)

    ADS  Google Scholar 

  • M. Renaud, J. Vink, A. Decourchelle et al., ApJ 647, L41 (2006)

    ADS  Google Scholar 

  • S.P. Reynolds, B.M. Gaensler, F. Bocchino, Space Sci. Rev. 166, 231 (2012)

    ADS  Google Scholar 

  • L. Saha, T. Ergin, P. Majumdar, M. Bozkurt, E.N. Ercan, A&A 563, A88 (2014)

    ADS  Google Scholar 

  • T. Sato, S. Katsuda, M. Morii et al., ApJ 853, 46 (2018)

    ADS  Google Scholar 

  • Z.-D. Shi, S. Liu, MNRAS 485, 3869 (2019)

    ADS  Google Scholar 

  • Y. Su, X. Zhou, J. Yang et al., ApJ 845, 48 (2017)

    ADS  Google Scholar 

  • X. Tang, R.A. Chevalier, ApJ 784, L35 (2014)

    ADS  Google Scholar 

  • M. Tavani, A. Bulgarelli, V. Vittorini et al., Science 331, 736 (2011)

    ADS  Google Scholar 

  • Tibet AS\(\gamma\) Collaboration, M. Amenomori, Y.W. Bao, et al., Nat. Astron. 5, 460 (2021)

  • R.J. Tuffs, L. Drury, J. Fischera et al., Proc. 1-st ISO Workshop on Analytical Spectroscopy (ESA SP-419), p. 177 (1997)

  • Y. Uchiyama, F.A. Aharonian, ApJ 677, L105 (2008)

    ADS  Google Scholar 

  • Y. Uchiyama, R.D. Blandford, S. Funk, H. Tajima, T. Tanaka, ApJ 723, L122 (2010)

    ADS  Google Scholar 

  • Y. Uchiyama, T. Takahashi, F.A. Aharonian, J.R. Mattox, ApJ 571, 866 (2002)

    ADS  Google Scholar 

  • J. Vink, J.S. Kaastra, J.A.M. Bleeker, A&A 307, L41 (1996)

    ADS  Google Scholar 

  • J. Vink, J.M. Laming, J.S. Kaastra et al., ApJ 560, L79 (2001)

    ADS  Google Scholar 

  • E.N. Vinyaikin, Astron. Rep. 58, 626 (2014)

    ADS  Google Scholar 

  • H.J. Völk, V.N. Zirakashvili, A&A 417, 807 (2004)

    ADS  Google Scholar 

  • W. Wang, Z. Li, ApJ 825, 102 (2016)

    ADS  Google Scholar 

  • R. Willingale, J.A.M. Bleeker, K.J. van der Heyden, J.S. Kaastra, J. Vink, A&A 381, 1039 (2002)

    ADS  Google Scholar 

  • M. Wood, R. Caputo, E. Charles, et al., in International Cosmic Ray Conference, Vol. 301, 35th International Cosmic Ray Conference (ICRC2017), 824 (2017)

  • Y. Xin, H. Zeng, S. Liu, Y. Fan, D. Wei, ApJ 885, 162 (2019)

    ADS  Google Scholar 

  • C.-Y. Yang, B.-W. Bao, S.-M. Liu, Res. Astron. Astrophys. 20, 048 (2020)

    ADS  Google Scholar 

  • Y.S. Yoon, T. Anderson, A. Barrau et al., ApJ 839, 5 (2017)

    ADS  Google Scholar 

  • Q. Yuan, S. Liu, X. Bi, ApJ 761, 133 (2012)

    ADS  Google Scholar 

  • Y. Yuan, S. Funk, G. Jóhannesson et al., ApJ 779, 117 (2013)

    ADS  Google Scholar 

  • H. Zeng, Y. Xin, S. Liu, ApJ 874, 50 (2019)

    ADS  Google Scholar 

  • H. Zeng, Y. Xin, S. Liu et al., ApJ 834, 153 (2017)

    ADS  Google Scholar 

  • H. Zeng, Y. Xin, S. Zhang, S. Liu, ApJ 910, 78 (2021)

    ADS  Google Scholar 

  • H.-M. Zhang, S.-Q. Xi, R.-Y. Liu et al., ApJ 889, 12 (2020)

    ADS  Google Scholar 

  • L. Zhang, X.C. Yang, ApJ 699, L153 (2009)

    ADS  Google Scholar 

  • P.-P. Zhang, B.-Q. Qiao, W. Liu et al., J. Cosmol. Astropart. Phys. 2021, 012 (2021)

    Google Scholar 

  • X. Zhang, Y. Chen, J. Huang, D. Chen, MNRAS 497, 3477 (2020)

    ADS  Google Scholar 

  • X. Zhang, S. Liu, ApJ 874, 98 (2019a)

    ADS  Google Scholar 

  • Y. Zhang, S. Liu, MNRAS 482, 5268 (2019b)

    ADS  Google Scholar 

  • Y. Zhang, S. Liu, Q. Yuan, ApJ 844, L3 (2017)

    ADS  Google Scholar 

  • Y.-R. Zhang, S.-M. Liu, Chin. Astron. Astrophys. 44, 1 (2020)

    ADS  Google Scholar 

  • Y.-R. Zhang, S.-M. Liu, H.-D. Zeng, MNRAS 511, 6218 (2022)

    ADS  Google Scholar 

  • B. Zhao, W. Liu, Q. Yuan et al., ApJ 926, 41 (2022)

    ADS  Google Scholar 

  • P. Zhou, J.-T. Li, Z.-Y. Zhang et al., ApJ 865, 6 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Key R&D program of China under Grant No. 2018YFA0404203, G2021166002L, and NSFC Grants U1931204, U2031111, 12103040, 12147208, and 11761131007, DFG Sino-German Collaboration Project nos. BU 777/15-1 and MU 4255/1-1, and the Natural Science Foundation for Young Scholars of Jiangsu Province, China (no. BK20191109). On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siming Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zeng, H., Xin, Y. et al. The origin of galactic cosmic rays. Rev. Mod. Plasma Phys. 6, 19 (2022). https://doi.org/10.1007/s41614-022-00080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-022-00080-6

Keywords

Navigation