Skip to main content
Log in

ON THE THERMODYNAMIC STABILITY OF ILLITE AND I-S MINERALS

  • Review
  • Published:
Clays and Clay Minerals

Abstract

A review of the models proffered to advance the notion of the metastability of illite shows that these models are not supported by the various data groups that have become available. Given that clay minerals are products of water–rock interactions, low-temperature hydrothermal experiments provide singular insights into their relative stabilities; such experiments with natural materials of contrasting pedigree (illites, sericites, muscovites, and chlorites) show that clay-mineral behaviors in low-temperature hydrothermal solutions are amenable to equilibrium thermodynamic conventions. The data from hydrothermal experiments coupled with data from geothermal fields indicate that muscovite is not a stable phase in the P-T-X range in which authigenic illite occurs; given that experimental data and field occurrence suggest that muscovite and illite have different P-T stability regimes, the continued use of muscovite as a proxy for illite in thermodynamic models is of questionable utility. Furthermore, morphometric studies of clays undergoing illitization show that crystal-size distributions exhibit log-normal patterns. Because log-normal distributions derive from maximum entropy effects, these crystal-size distributions may reflect the effects of entropy production during crystallization rather than kinetically driven Ostwald ripening of illitic phases; the small crystal size of clay minerals may derive from constraints imposed by the physicochemical conditions of their environments of formation. Presumably, irreversible thermodynamics provides the framework for a quantitative understanding of the evolution of complex clay minerals in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn, J. H., & Peacor, D. R. (1986). Transmission and analytical electron microscopy of the smectite-to-illite transition. Clays and Clay Minerals, 34, 165–179.

    Google Scholar 

  • Aja, S. U. (1989) A hydrothermal study of illite stability relationships between 25 and 250°C and \( {P}_v={P}_{H_2O} \). PhD thesis, Washington State University.

  • Aja, S. U. (1991). Illite equilibria in solutions: III. A reinterpretation of the data of Sass et al. (1987). Geochimica et Cosmochimica Acta, 55, 3431–3435.

    Google Scholar 

  • Aja, S. U. (1995). Thermodynamic properties of some 2:1 layer clay minerals from solution-equilibration data. European Journal of Mineralogy, 7, 325–333.

    Google Scholar 

  • Aja, S. U. (2002). The stability of Fe-Mg chlorites in hydrothermal solutions: II. Thermodynamic properties. Clays and Clay Minerals, 50, 591–600.

    Google Scholar 

  • Aja, S. U., & Dyar, M. D. (2002). The stability of Fe-Mg chlorites in hydrothermal solutions I. Results of experimental investigations. Applied Geochemistry, 17, 1219–1239.

    Google Scholar 

  • Aja, S. U., & Rosenberg, P. E. (1992). The thermodynamic status of compositionally-variable clay minerals: A discussion. Clays and Clay Minerals, 40, 292–299.

    Google Scholar 

  • Aja, S. U., & Rosenberg, P. E. (1996). The thermodynamic status of compositionally-complex clay minerals: Discussion of “Clay Mineral thermometry – A critical perspective”. Clays and Clay Minerals, 44, 560–568.

    Google Scholar 

  • Aja, S. U., Rosenberg, P. E., & Kittrick, J. A. (1991a). Illite equilibria in solutions: I. Phase relationships in the system K2O-Al2O3-SiO2-H2O between 25 and 250°C. Geochimica et Cosmochimica Acta, 55, 1353–1364.

  • Aja, S. U., Rosenberg, P. E., & Kittrick, J. A. (1991b). Illite equilibria in solutions: II. Phase relationships in the system K2O-Al2O3-MgO-SiO2-H2O. Geochimica et Cosmochimica Acta, 55, 1365–1374.

    Google Scholar 

  • Aja, S.U., & Small, J.S. (1999) The solubility of a low-Fe clinochlore between 25 and 175°C and \( {P}_v={P}_{H_2O} \)European Journal of Mineralogy, 11, 829–842.

  • Altaner, S. P., & Ylagan, R. F. (1997). Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays and Clay Minerals, 45, 517–533.

    Google Scholar 

  • Anderson, G. M. (2002) Stable and metastable equilibrium: the third constraint. In R. Hellman, & S. A. Wood. (eds), Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: a Tribute to David A. Crerar (pp. 181–189). The Geochemical Society, Special Publications, 7.

  • Baldan, A. (2002). Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. Journal of Materials Science, 37, 2171–2202.

    Google Scholar 

  • Berrill, J. B., & Davis, R. O. (1980). Maximum entropy and the magnitude distribution. Bulletin of the Seismological Society of America, 70, 1823–1831.

    Google Scholar 

  • Boles, J. R., & Franks, S. G. (1979). Clay diagenesis in Wilcox sandstones of Southwest Texas: implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology, 49, 55–70.

    Google Scholar 

  • Brown, G., & Norrish, K. (1952). Hydrous micas. Mineralogical Magazine, 29, 929–932.

    Google Scholar 

  • Chung, S.-Y., Kim, Y.-M., Kim, J.-G., & Kim, Y.-J. (2009). Multiphase transformation and Ostwald’s rule of stages during crystallization of a metal phosphate. Nature Physics, 5, 68–73.

    Google Scholar 

  • De Yoreo, J. J., & Vekilov, P. G. (2003). Principles of crystal nucleation and growth. Reviews in Mineralogy, 54, 57–93.

    Google Scholar 

  • Dong, H., & Peacor, D. R. (1996). TEM observations of coherent stacking relations in smectite, IIS and illite of shales: evidence for MacEwan crystallites and dominance of 2M1 polytypism. Clays and Clay Minerals, 44, 257–275.

    Google Scholar 

  • Dong, H., Peacor, D. R., & Freed, R. L. (1997). Phase relations among smectite, R1 illite-smectite, and illite. American Mineralogist, 82, 379–391.

    Google Scholar 

  • Drits, V. A., Lindgreen, H., Sakharov, B. A., Jakobsen, H. J., Fallick, A. F., Salyn, A. I., Dainyk, I. G., Zviagina, B. B., & Barfod, D. N. (2007). Formation and transformation of mixed-layer minerals by Tertiary intrusives in Cretaceous mudstones, West Greenland. Clays and Clay Minerals, 55, 260–283.

    Google Scholar 

  • Dubacq, D., Vidal, O., & Lewin, É. (2011). Atomistic investigation of the pyrophyllite substitution and implications on clay stability. American Mineralogist, 96, 241–249.

    Google Scholar 

  • Dunoyer de Segonzac, G. (1970). The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology, 15, 281–346.

    Google Scholar 

  • Eberl, D. D., & Hower, J. (1977). The hydrothermal transformation of sodium and potassium smectite into mixed layer clay. Clays and Clay Minerals, 28, 161–172.

    Google Scholar 

  • Eberl, D. D., Środoń, J., Lee, M., Nadeau, P. H., & Northrop, H. R. (1987). Sericite from the Silverton caldera, Colorado: Correlation among structure, composition, origin, and particle thickness. American Mineralogist, 72, 914–934.

    Google Scholar 

  • Eberl, D. D., & Środoń, J. (1988). Ostwald ripening and interparticle diffraction effects for illite crystals. American Mineralogist, 73, 1335–1345.

    Google Scholar 

  • Eberl, D. D., Środoń, J., Kralik, M., Taylor, B., & Peterman, Z. E. (1990). Ostwald ripening of clays and metamorphic minerals. Science, 248, 474–477.

    Google Scholar 

  • Eberl, D. D., Drits, V. A., & Środoń, J. (1998). Deducing growth mechanisms for minerals from the shapes of crystal size distributions. American Journal of Science, 298, 499–533.

    Google Scholar 

  • Essene, E. J., & Peacor, D. R. (1995). Clay mineral thermometry: A critical perspective. Clays and Clay Minerals, 43, 540–553.

    Google Scholar 

  • Foscolos, A. E., & Kodama, H. (1974). Diagenesis of clay minerals from Lower Cretaceous shales of North Eastern British Columbia. Clays and Clay Minerals, 22, 319–335.

    Google Scholar 

  • Gailhanou, H., Blanc, P., Rogez, J., Mikaelian, G., Kawaji, H., Olives, J., Amouric, M., Denoyel, R., Bourrelly, S., Montouillout, V., Viellard, P., Fialips, C. I., Michau, N., & Gaucher, E. C. (2012). Thermodynamic properties of illite, smectite and beidellite by calorimetric methods: Enthalpies of formation, heat capacities, entropies and Gibbs free energies of formation. Geochimica et Cosmochimica Acta, 89, 279–391.

    Google Scholar 

  • Garrels, R. M., & Howard, P. (1957). Reactions of feldspar and mica with water at low temperature and pressure. Clays and Clay Minerals, 6, 68–88.

    Google Scholar 

  • Gaudette, H. E. (1965). Illite from Fond du Lac County, Wisconsin. American Mineralogist, 50, 411–417.

    Google Scholar 

  • Gaudette, H. E., Eades, J. L., & Grim, R. E. (1966a). The nature of illites. Clays and Clay Minerals, 13, 33–48.

    Google Scholar 

  • Gaudette, H. E., Grim, R. E., & Metzger, C. F. (1966b). Illite: a model based on the sorption behavior of cesium. American Mineralogist, 51, 1649–1656.

    Google Scholar 

  • Grim, R. E., & Bradley, W. F. (1939). A unique clay from the Goose Lake, Illinois, area. Journal of American Ceramic Society, 22, 157–164.

    Google Scholar 

  • Grim, R. E., Bray, R. H., & Bradley, W. F. (1937). The mica in argillaceous sediments. American Mineralogist, 22, 813–829.

    Google Scholar 

  • Groṅholm, T., & Annila, A. (2007). Natural distribution. Mathematical Biosciences, 210, 659–667.

    Google Scholar 

  • Güven, N. (1972). Electron optical observations in Marblehead illite. Clays and Clay Minerals, 37, 1–11.

    Google Scholar 

  • Hartman, P. (1973). Structure and morphology. In P. Hartman (Ed.), Crystal Growth: an Introduction (pp. 358–402). Amsterdam: North Holland Publishing Company.

  • Heling, D. (1974). Diagenetic alteration of smectite in argillaceous sediments of the Rhinegraben. Sedimentology, 21, 463–472.

    Google Scholar 

  • Hemley, J. J. (1959). Some mineralogic equilibria in the system K2O-Al2O3-SiO2 -H2O. American Journal of Science, 57, 241–270.

  • Hower, J., & Mowatt, T. C. (1966). The mineralogy of illites and mixed-layer illite-montmorillonites. American Mineralogist, 51, 825–854.

    Google Scholar 

  • Hower, J., Eslinger, E. V., Hower, M. E., & Perry, E. A. (1976). Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725–737.

    Google Scholar 

  • Inoue, A. (1983). Potassium fixation by clay minerals during hydrothermal treatment. Clays and Clay Minerals, 31, 81–91.

    Google Scholar 

  • Inoue, A., & Kitagawa, R. (1994). Morphological characteristics of illitic clay minerals from a hydrothermal system. American Mineralogist, 79, 700–711.

    Google Scholar 

  • Inoue, A., & Utada, M. (1983). Further investigations of a conversion series of dioctahedral mica/smectites in the Shinzan hydrothermal alteration area, northeast Japan. Clays and Clay Minerals, 31, 401–412.

    Google Scholar 

  • Inoue, A., Minto, H., & Utada, M. (1978). Mineralogical properties and occurrence of illite/montmorillonite mixed layer minerals formed from Miocene volcanic glass in Waga-Omono district. Clay Science, 5, 123–136.

    Google Scholar 

  • Inoue, A., Kohyama, N., Kitagawa, R., & Watanabe, T. (1987). Chemical and morphological evidence for the conversion of smectite to illite. Clays and Clay Minerals, 35, 111–120.

    Google Scholar 

  • Inoue, A., Velde, B., Meunier, A., & Touchard, G. (1988). Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system. American Mineralogist, 73, 1325–1334.

    Google Scholar 

  • Jaisi, D. P., Eberl, D. D., Dong, H., & Kim, J. (2011). The formation of illite from nontronite by mesophilic and thermophilic bacterial reaction. Clays and Clay Minerals, 59, 21–33.

    Google Scholar 

  • Jiang, W., Essene, E. J., & Peacor, D. R. (1990). Transmission electron microscopic study of coexisting pyrophyllite and muscovite: direct evidence for the metastability of illite. Clays and Clay Minerals, 38, 225–240.

    Google Scholar 

  • Kittrick, J. A. (1984). Solubility measurements of phases in three illites. Clays and Clay Minerals, 32, 115–124.

    Google Scholar 

  • Kim, J., & Peacor, D. R. (2002). Crystal-size distributions of clays during episodic diagenesis: The Salton Sea geothermal system. Clays and Clay Minerals, 50, 371–380.

    Google Scholar 

  • Kim, J., Dong, H., Seabaugh, J., Newell, S., & Eberl, D. D. (2004). Role of microbes in the smectite-to-illite reaction. Science, 303, 830–832.

    Google Scholar 

  • Kim, J., Dong, H., Yang, K., Park, H., Elliott, W. C., Spivack, A., Koo, T.-H., Kim, G., Morono, Y., Henkel, S., Inagaki, F., Zeng, Q., Hoshino, T., & Heuer, V. B. (2019). Naturally occurring, microbially induced smectite-to-illite reaction. Geology, 47, 535–539.

    Google Scholar 

  • Kondepudi, D., & Prigogine, I. (1998). Modern Thermodynamics: From Heat Engines to Dissipative Structures. New York: John Wiley.

  • Kuila, U., & Prasad, M. (2013). Specific surface area and pore-size distribution in clays and shales. Geophysical Prospecting, 61, 341–362.

    Google Scholar 

  • Kulik, D. A., & Aja, S. U. (1997). The hydrothermal stability of illite: implications of empirical correlations and Gibbs energy minimization. In D. A. Palmer & D. J. Wesolowski (Eds.), Proceedings of the Fifth International Symposium on Hydrothermal Reactions (pp. 288–292). Gatlinburg, Tennessee, USA: ORNL.

  • Kuwahara, Y., & Uehara, S. (2008). AFM study on surface microtopography, morphology and crystal growth of hydrothermal illite in Izumiyama pottery stone from Arita, Saga Prefecture, Japan. The Open Mineralogy Journal, 2, 34–37.

    Google Scholar 

  • Lanson, B., & Champion, D. (1991). The I/S-to-illite reaction in the late stage diagenesis. American Journal of Science, 291, 473–506.

    Google Scholar 

  • Li, D., Nielsen, M. H., Lee, J. R. I., Frandsen, C., Banfield, J. F., & De Yoreo, J. J. (2012). Direction-specific interactions control crystal growth by oriented attachment. Science, 336, 1014–1018.

    Google Scholar 

  • Lifshitz, I. M., & Slyozov, V. V. (1961). The kinetics of precipitation from supersaturated solid solutions. Journal of Physics and Chemistry of Solids, 19, 35–50.

    Google Scholar 

  • Lippmann, F. (1977). The solubility product of complex minerals, mixed-crystals and three-layer clay minerals. Neues Jahrbuch für Mineralogie – Abhandlungen, 130, 243–263.

    Google Scholar 

  • Lippmann, F. (1982). The thermodynamic status of clay minerals. In H. van Olphen & F. Veniale (Eds.), Proceedings of the 7th International Clay Conference Bologna, Pavia 1981 (pp. 475–485). New York: Elsevier.

    Google Scholar 

  • Lonker, S. W., Fitz Gerald, J. D., Hedenquist, J. W., & Walshe, J. (1990). Mineral-fluid interactions in the Broadlands-Ohaaki geothermal system, New Zealand. American Journal of Science, 290, 995–1068.

    Google Scholar 

  • Loucks, R. R. (1991). The bound interlayer H2O content of potassic white micas: muscovite-hydromuscovite-hydropyrophyllite solutions. American Mineralogist, 76, 1563–1579.

  • Manning, D. A. C. (2003). Experimental studies of mineral occurrences. In R. H. Worden & S. Morad (Eds.), Clay Mineral Cements in Sandstones (pp. 177–190). Oxford: International Association of Sedimentologists Special Publications 34, Blackwell Publishing company.

    Google Scholar 

  • Mankin, C. J., & Dodd, C. G. (1963). Proposed reference illite from the Ouchita Mountains of Southeastern Oklahoma. Clays and Clay Minerals, 10, 372–379.

    Google Scholar 

  • McDowell, D. S., & Elders, W. A. (1980). Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea Geothermal Field, California, USA. Contributions to Mineralogy and Petrology, 74, 293–310.

    Google Scholar 

  • Meunier, A. (2006). Why are clay minerals small? Clay Minerals, 41, 551–566.

    Google Scholar 

  • Montoya, J. W., & Hemley, J. J. (1975). Activity relations and stabilities in alkali feldspar and mica alteration reactions. Economic Geology, 70, 577–594.

    Google Scholar 

  • Morse, J. W., & Casey, W. H. (1988). Ostwald processes and mineral paragenesis in sediments. American Journal of Science, 288, 537–560.

    Google Scholar 

  • Muffler, P. L. J., & White, D. E. (1969). Active metamorphism of Upper Cenozoic sediments in the Salton Sea geothermal field and the Salton Trough, southeastern California. Geological Society of America Bulletin, 80, 157–182.

    Google Scholar 

  • Nadeau, P. H., & Reynolds Jr., R. C. (1981). Burial and contact metamorphism in the Mancos Shale. Clays and Clay Minerals, 29, 249–259.

    Google Scholar 

  • Nieto, F., Mellini, M., & Abad, I. (2010). The role of H3O+ in the crystal structure of illite. Clays and Clay Minerals, 58, 238–246.

    Google Scholar 

  • Ostwald, W. Z. (1897). Studien über die Bildung und Umwandlung fester Körper. I. Abhandlung: Ubersattigung and Uberkaltung. Zeitschrift für Physikalische Chemie, 22, 289–330.

    Google Scholar 

  • Perry, E., & Hower, J. (1970). Burial diagenesis in Gulf Coast pelitic sediments. Clays and Clay Minerals, 18, 165–177.

    Google Scholar 

  • Pollastro, R. M. (1985). Mineralogical and morphological evidence for the formation of illite at the expense of illite/smectite. Clays and Clay Minerals, 33, 265–274.

    Google Scholar 

  • Prigogine, I. (1961). Introduction to Thermodynamics of Irreversible Processes, 2e. New York: Interscience Publishers–John Wiley.

  • Primmer, T. J. (1994). Some comments on the chemistry and stability of interstratified illite-smectite and the role of Ostwald-type processes. Clay Minerals, 29, 63–68.

    Google Scholar 

  • Primmer, T. J., Warren, E. A., Sharma, B. K., & Atkins, M. P. (1993). The stability of experimental grown clay minerals: implications for modelling the stability of neoformed clay minerals. In D. A. C. Manning, P. L. Hall, & C. R. Hughes (Eds.), Geochemistry of Clay-Pore Fluid Interactions (pp. 163–180). London: Chapman & Hall.

  • Pytte, A. M., & Reynolds, R. C. (1989). The thermal transformation of smectite to illite. In N. D. Naeser & T. H. McCulloh (Eds.), Thermal History of Sedimentary Basins (pp. 133–140). New York, NY: Springer.

    Google Scholar 

  • Reesman, A. L., & Keller, W. D. (1968). Aqueous solubility studies of high alumina and clay minerals. American Mineralogist, 53, 929–942.

    Google Scholar 

  • Roberson, H. E., & Lahann, R. W. (1981). Smectite to illite conversion rates: effects of solution chemistry. Clays and Clay Minerals, 29, 129–135.

    Google Scholar 

  • Rosenberg, P. E., Kittrick, J. A., & Sass, B. M. (1985). Implications of illite/smectite stability diagrams: A discussion. Clays and Clay Minerals, 33, 561–562.

    Google Scholar 

  • Rosenberg, P. E., Kittrick, J. A., & Aja, S. U. (1990). Mixed-layer illite/smectite: A multiphase model. American Mineralogist, 75, 1182–1185.

    Google Scholar 

  • Routson, R. C., & Kittrick, J. A. (1971) Illite solubility. Proceeding of Soil Science Society of America, 36, 714-718.

  • Sass, B. M., Rosenberg, P. E., & Kittrick, J. A. (1987). The stability of illite/smectite during diagenesis: An experimental study. Geochimica et Cosmochimica Acta, 51, 2103–2115.

    Google Scholar 

  • Sharma, V., & Annila, A. (2007). Natural process – natural selection. Biophysical Chemistry, 127, 123–128.

    Google Scholar 

  • Smith, M. M., Dai, Z., & Caroll, S. A. (2017). Illite dissolution kinetics from 100 to 280 C and pH 3 to 9. Geochimica et Cosmochimica Acta, 209, 9–23.

    Google Scholar 

  • Środoń, J. (1984). X-ray powder diffraction identification of illitic materials. Clays and Clay Minerals, 32, 337–349.

    Google Scholar 

  • Środoń, J., & Eberl, D. D (1984) Illite. Reviews in Mineralogy, 13, 495–544.

  • Środoń, J., Eberl, D. D., & Drits, V. A. (2000). Evolution of fundamental-particle size during illitization of smectite and implications for reaction mechanism. Clays and Clay Minerals, 48, 446–458.

    Google Scholar 

  • Steiner, A. (1968). Clay minerals in hydrothermally altered rocks at Wairakei, New Zealand. Clays and Clay Minerals, 16, 193–213.

    Google Scholar 

  • Tillick, D. A., Peacor, D. R., & Mauk, J. L. (2001). Genesis of dioctahedral phyllosilicates during hydrothermal alteration of volcanic rocks: I. the Golden Cross epithermal ore deposit, New Zealand. Clays and Clay Minerals, 49, 126–140.

    Google Scholar 

  • Van Moort, J. C. (1971). A comparative study of the diagenetic alteration of clay minerals in Mesozoic shales from Papua, New Guinea, and in Tertiary shales from Louisiana, U.S.A. Clays and Clay Minerals, 19, 1–20.

    Google Scholar 

  • Vidal, O., & Dubacq, B. (2009). Thermodynamic modelling of clay dehydration, stability and compositional evolution with temperature, pressure and H2O activity. Geochimica et Cosmochimica Acta, 73, 6544–6564.

    Google Scholar 

  • Vidal, O., Dubacq, B., & Lanari, P. (2010). Comment on “The role of H3O+ in the crystal structure of illite by F. Nieto, M. Melini, and I. Abad”. Clays and Clay Minerals, 58, 717–720.

    Google Scholar 

  • Wagner, C. (1961). Theorie der Alterung von Neiderschliigen durch UmItisen (Ostwald Reifung). Zeitschrift fiir Electrochemie, 65, 581–591.

    Google Scholar 

  • White, G. N., & Zelazny, L. W. (1988). Analysis and implications of the edge structure of dioctahedral phyllosilicates. Clays and Clay Minerals, 36, 141–146.

    Google Scholar 

  • Wolery, T. J. (1993) EQ3/6, A software package for geochemical modelling of aqueous systems (Version 7.2). Lawrence Livermore Nat. Lab. UCRL-MA 110662.

  • Yates, D. M. (1993) Experimental investigation of the formation and stability of endmember illite from 100 to 250°C and Pv.H20. PhD thesis, Washington State University.

  • Yates, D.M., & Rosenberg, P.E. (1996) Formation and stability of endmember illite: I. Solution equilibration experiments at 100° to 150° C and Pv, soln. Geochimica et Cosmochimica Acta, 60, 1873–1883.

  • Yates, D.M., & Rosenberg, P.E. (1997) Formation and stability of endmember illite: II. Solid equilibration experiments at 100 to 250°C and Pv, soln. Geochimica et Cosmochimica Acta, 61, 3135–3144.

  • Yates, D. M., & Rosenberg, P. E. (1998). Characterization of neoformed illite from hydrothermal experiments at 250 8C andPv, soln: An HRTEM/ATEM study. American Mineralogist, 83, 1199–1208.

    Google Scholar 

  • Yau, S. -T., Petsev, D. N., Thomas, B. R., & Vekilov, P. G. (2000). Molecular-level thermodynamic and kinetic parameters for the self-assembly of apoferritin molecules into crystals. Journal of Molecular Biology, 303, 667–678.

    Google Scholar 

  • Zhang, G., Kim, J., Dong, H., & Sommer, A. J. (2007). Microbial effects in promoting the smectite to illite reaction: role of organic matter intercalated in the interlayer. American Mineralogist, 92, 1401–1410.

    Google Scholar 

Download references

Acknowledgments

This work was not directly funded by any external funding agencies. Constructive and thoughtful review comments provided by the Editor-in-chief, the Associate Editor, and two journal reviewers are gratefully acknowledged. Also, the author gratefully acknowledge Dr. D. M. Yates for providing the TEM micrograph.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen U. Aja.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Additional information

[Received 2 August 2019; revised 4 November 2019; AE: Warren D. Huff]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aja, S.U. ON THE THERMODYNAMIC STABILITY OF ILLITE AND I-S MINERALS. Clays Clay Miner. 67, 518–536 (2019). https://doi.org/10.1007/s42860-019-00044-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-019-00044-x

Keywords

Navigation