Skip to main content

New Horizons: Anticipated Scientific Investigations at the Pluto System

  • Chapter
New Horizons

Abstract

The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • F. Bagenal, T.E. Cravens, J.G. Luhmann, R.L. McNutt, A.F. Cheng, Pluto’s interaction with the solar wind, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 523–555

    Google Scholar 

  • K.H. Baines , Polar lightning and decadal-scale cloud variability on Jupiter. Science 318, 226 (2007)

    Article  ADS  Google Scholar 

  • D. Bockelée-Morvan, E. Lellouch, N. Biver, G. Paubert, J. Bauer, P. Colom, D.C. Lis, Search for CO gas in Pluto, Centaurs and Kuiper belt objects at radio wavelengths. Astron. Astrophys. 377, 343–353 (2001)

    Article  ADS  Google Scholar 

  • M.E. Brown, Pluto and Charon: formation, seasons, composition. Ann. Rev. Earth Planet. Sci. 30, 307–345 (2002)

    Article  ADS  Google Scholar 

  • M.E. Brown, W.M. Calvin, Evidence for crystalline water and ammonia ices on Pluto’s satellite Charon. Science 287, 107–109 (2000)

    Article  ADS  Google Scholar 

  • R.H. Brown, D.P. Cruikshank, J. Veverka, P. Helfenstein, J. Eluszkiewicz, Surface composition and photometric properties of Triton, in Neptune and Triton, ed. by D.P. Cruikshank (Univ. of Arizona Press, Tucson, 1995), pp. 991–1030

    Google Scholar 

  • M.W. Buie, W.M. Grundy, The distribution and physical state of H2O on Charon. Icarus 148, 324–329 (2000)

    Article  ADS  Google Scholar 

  • M.W. Buie, W.M. Grundy, E.F. Young, L.A. Young, S.A. Stern, Orbits and photometry of Pluto’s satellites: Charon, S/2005 P1, and S/2005 P2. Astron. J. 132, 290–298 (2006)

    Article  ADS  Google Scholar 

  • M.W. Buie, D.J. Tholen, L.H. Wasserman, Separate lightcurves of Pluto and Charon. Icarus 125, 233–244 (1997a)

    Article  ADS  Google Scholar 

  • M.W. Buie, E.F. Young, R.P. Binzel, Surface appearance of Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997b), pp. 269–293

    Google Scholar 

  • R.M. Canup, A giant impact origin of Pluto–Charon. Science 307, 546–550 (2005)

    Article  ADS  Google Scholar 

  • A.F. Cheng , Long range reconnaissance imager on New Horizons. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9271-6

    Google Scholar 

  • A.F. Cheng , Changing characteristics of Jupiter’s little red spot. Astron. J. 135, 2446–2452 (2008)

    Article  ADS  Google Scholar 

  • J.T. Clarke, S.A. Stern, L.M. Trafton, Pluto’s extended atmosphere—an escape model and initial observations. Icarus 95m, 173–179 (1992)

    Article  ADS  Google Scholar 

  • D.P. Cruikshank, T.L. Roush, J.M. Moore, M. Sykes, T.C. Owen, M.J. Bartholomew, R.H. Brown, K.A. Tryka, The surfaces of Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 221–268

    Google Scholar 

  • A.R. Dobrovolskis, S.J. Peale, A.W. Harris, Dynamics of the Pluto–Charon binary, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 159–190

    Google Scholar 

  • S. Douté, B. Schmitt, E. Quirico, T.C. Owen, D.P. Cruikshank, C. de Bergh, T.R. Geballe, T.L. Roush, Evidence for methane segregation at the surface of Pluto. Icarus 142, 421–444 (1999)

    Article  ADS  Google Scholar 

  • N.S. Duxbury, R.H. Brown, V. Anicich, Condensation of nitrogen: Implications for Pluto and Triton. Icarus 129, 202–206 (1997)

    Article  ADS  Google Scholar 

  • J.L. Elliot, L.A. Young, Limits to the radius and possible atmosphere of Charon from its 1980 stellar occultation. Icarus 89, 244–254 (1991)

    Article  ADS  Google Scholar 

  • J.L. Elliot , The recent expansion of Pluto’s atmosphere. Nature 424, 165–168 (2003)

    Article  ADS  Google Scholar 

  • J.L. Elliot , Changes in Pluto’s atmosphere: 1988–2006. Astron. J. 134, 1–13 (2007)

    Article  ADS  Google Scholar 

  • P. Farinella, D.R. Davis, S.A. Stern, Formation and collisional evolution of the Edgeworth-Kuiper belt, in Protostars and Planets IV, ed. by V. Mannings, A.P. Boss, S.S. Russell (Univ. of Arizona Press, Tucson, 2000), pp. 1255–1282

    Google Scholar 

  • G.R. Gladstone , Jupiter’s nightside airglow and aurora. Science 318, 229 (2007)

    Article  ADS  Google Scholar 

  • T.K. Greathouse et al., New Horizons Alice ultraviolet observations of a stellar occultation by Jupiter’s atmosphere. Icarus (2008, submitted)

    Google Scholar 

  • W.M. Grundy, Methane and nitrogen ices on Pluto and Triton: a combined laboratory and telescope investigation. Ph.D. Thesis, University of Arizona, 1995

    Google Scholar 

  • W.M. Grundy, M.W. Buie, Distribution and evolution of CH4, N2, and CO ices on Pluto’s surface: 1995 to 1998. Icarus 153, 248–263 (2001)

    Article  ADS  Google Scholar 

  • W.M. Grundy, M.W. Buie, Spatial and compositional constraints on non-ice components and H2O on Pluto’s surface. Icarus 157, 128–138 (2002)

    Article  ADS  Google Scholar 

  • W.M. Grundy, L.A. Young, Near infrared spectral monitoring of Triton with IRTF/SpeX I: Establishing a baseline. Icarus 172, 455–465 (2004)

    Article  ADS  Google Scholar 

  • W.M. Grundy, B. Schmitt, E. Quirico, The temperature dependent spectra of alpha and beta nitrogen ice with application to Triton. Icarus 105, 254–258 (1993)

    Article  ADS  Google Scholar 

  • W.M. Grundy, M.W. Buie, J.A. Stansberry, J.R. Spencer, B. Schmitt, Near-infrared spectra of icy outer solar system surfaces: Remote determination of H2O ice temperatures. Icarus 142, 536–549 (1999)

    Article  ADS  Google Scholar 

  • W.M. Grundy, B. Schmitt, E. Quirico, The temperature-dependent spectrum of methane ice I between 0.7 and 5 μm and opportunities for near-infrared remote thermometry. Icarus 155, 486–496 (2002)

    Article  ADS  Google Scholar 

  • W.M. Grundy, L.A. Young, J.R. Spencer, R.E. Johnson, E.F. Young, M.W. Buie, Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations. Icarus 184, 543–555 (2006)

    Article  ADS  Google Scholar 

  • W.M. Grundy , New Horizons mapping of Europa and Ganymede. Science 318, 234 (2007)

    Article  ADS  Google Scholar 

  • A.A.S. Gulbis, J.L. Elliot, M.J. Person, E.R. Adams, B.A. Babcock, M. Emilio, J.W. Gangestad, S.D. Kern, E.A. Kramer, D.J. Osip, J.M. Pasachoff, S.P. Souza, T. Tuvikene, Charon’s radius and atmospheric constraints from observations of a stellar occultation. Nature 439, 48–51 (2006)

    Article  ADS  Google Scholar 

  • Y. Guo, R. Farquhar, New Horizons mission design. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9242-y

    Google Scholar 

  • M. Horanyi , The Student Dust Counter on the New Horizons mission. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9250-y

    Google Scholar 

  • V.A. Krasnopolsky, Hydrodynamic flow of N2 from Pluto. J. Geophys. Res. 104, 5955–5962 (1999)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, D.P. Cruikshank, Photochemistry of Pluto’s atmosphere and ionosphere near perihelion. J. Geophys. Res. 104, 21979–21996 (1999)

    Article  ADS  Google Scholar 

  • E. Lellouch, R. Laureijs, B. Schmitt, E. Quirico, C. de Bergh, J. Crovisier, A. Coustenis, Pluto’s non-isothermal surface. Icarus 147, 220–250 (2000)

    Article  ADS  Google Scholar 

  • J.-C. Liou, H.A. Zook, Signatures of the giant planets imprinted on the Edgeworth-Kuiper belt dust disk. Astron. J. 118, 580–590 (1999)

    Article  ADS  Google Scholar 

  • J.G. Luhmann, C.T. Russell, K. Schwingenschuh, E. Eroshenko, A comparison of induced magnetotails of planetary bodies – Venus, Mars, and Titan. J. Geophys. Res. 96, 11,19911,208 (1991)

    ADS  Google Scholar 

  • R. Malhotra, J.G. Williams, Pluto’s heliocentric orbit, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 127–157

    Google Scholar 

  • D.J. McComas, F. Allegrini, F. Bagenal, F. Crary, R.W. Ebert, H. Elliott, A. Stern, P. Valek, Diverse Plasma Populations and Structures in Jupiter’s Magnetotail. Science 318, 217 (2007)

    Article  ADS  Google Scholar 

  • D. McComas , The Solar Wind Around Pluto (SWAP) instrument aboard New Horizons. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9205-3

    Google Scholar 

  • R.L. McNutt Jr., Models of Pluto’s upper atmosphere. GRL 16, 1225–1228 (1989)

    Article  ADS  Google Scholar 

  • R.L. McNutt , Energetic Particles in the Jovian Magnetotail. Science 318, 220 (2007)

    Article  ADS  Google Scholar 

  • R.E. McNutt , The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on New Horizons. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9436-y

    Google Scholar 

  • C.B. Olkin, D. Reuter, A. Lunsford, R.P. Binzel, S.A. Stern, The New Horizons Distant Flyby of Asteroid 2002 JF56. AAS/Division for Planetary Sciences Meeting Abstracts 38 (2006) #59.22

    Google Scholar 

  • C.B. Olkin, E.F. Young, L.A. Young, W. Grundy, B. Schmitt, A. Tokunaga, T. Owen, T. Roush, H. Terda, Pluto’s spectrum from 1.0 to 4.2 μm: implications for surface properties. Astron. J. 133, 420–431 (2007)

    Article  ADS  Google Scholar 

  • T.C. Owen, T.L. Roush, D.P. Cruikshank, J.L. Elliot, L.A. Young, C. de Bergh, B. Schmitt, T.R. Geballe, R.H. Brown, M.J. Bartholomew, Surface ices and atmospheric composition of Pluto. Science 261, 745–748 (1993)

    Article  ADS  Google Scholar 

  • M.J. Person, J.L. Elliot, A.A.S. Gulbis, J.M. Pasachoff, B.A. Babcock, S.P. Souza, J. Gangestad, Charon’s radius and density from the combined data sets of the 2005 July 11 occultation. Astron. J. 132, 1575–1580 (2006)

    Article  ADS  Google Scholar 

  • E. Quirico, B. Schmitt, Near infrared spectroscopy of simple hydrocarbons and carbon oxides diluted in solid N2 and pure ices: Implication for Triton and Pluto. Icarus 127, 354–378 (1997)

    Article  ADS  Google Scholar 

  • E. Quirico, S. Douté, B. Schmitt, C. de Bergh, D.P. Cruikshank, T.C. Owen, T.R. Geballe, T.L. Roush, Composition, physical state and distribution of ices at the surface of Triton. Icarus 139, 159–178 (1999)

    Article  ADS  Google Scholar 

  • K. Rages, J.B. Pollack, Voyager imaging of Triton’s clouds and hazes. Icarus 99, 289–301 (1992)

    Article  ADS  Google Scholar 

  • K.D. Retherford , Io’s atmospheric response to eclipse: UV aurorae observations. Science 318, 237 (2007)

    Article  ADS  Google Scholar 

  • D.C. Reuter , Jupiter cloud composition, stratification, convection, and wave motion: a view from New Horizons. Science 318, 223 (2007)

    Article  ADS  Google Scholar 

  • D. Reuter , Ralph: A visible/infrared imager for the New Horizons mission. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9375-7

    Google Scholar 

  • E.L. Shock, W.B. McKinnon, Hydrothermal processing of cometary volatiles-applications to Triton. Icarus 106, 464–477 (1993)

    Article  ADS  Google Scholar 

  • M.R. Showalter, A.F. Cheng, H.A. Weaver, S.A. Stern, J.R. Spencer, H.B. Throop, E.M. Birath, D. Rose, J.M. Moore, Clump detections and limits on moons in Jupiter’s ring system. Science 318, 232 (2007)

    Article  ADS  Google Scholar 

  • B. Sicardy , Large changes in Pluto’s atmosphere as revealed by recent stellar occultations. Nature 424, 168–170 (2003)

    Article  ADS  Google Scholar 

  • B. Sicardy , Charon’s size and an upper limit on its atmosphere from a stellar occultation. Nature 439, 52–54 (2006)

    Article  ADS  Google Scholar 

  • J.R. Spencer, J.A. Stansberry, L.M. Trafton, E.F. Young, R.P. Binzel, S.K. Croft, Volatile transport, seasonal cycles, and atmospheric dynamics on Pluto, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 435–473

    Google Scholar 

  • J. Spencer, M. Buie, L. Young, Y. Guo, A. Stern, Finding KBO flyby targets for New Horizons. Earth, Moon Planets 92, 483–491 (2003)

    Article  ADS  Google Scholar 

  • J.R. Spencer , Io volcanism seen by New Horizons: A major eruption of the Tvashtar volcano. Science 318, 240 (2007)

    Article  ADS  Google Scholar 

  • J.A. Stansberry, R.V. Yelle, Emissivity and the fate of Pluto’s atmosphere. Icarus 141, 299–306 (1999)

    Article  ADS  Google Scholar 

  • A.J. Steffl, M.J. Mutchler, H.A. Weaver, S.A. Stern, D.D. Durda, D. Terrell, W.J. Merline, L.A. Young, E.F. Young, M.W. Buie, J.R. Spencer, New constraints on additional satellites of the Pluto system. Astron. J. 132, 614–619 (2007)

    Article  ADS  Google Scholar 

  • S.A. Stern, The Pluto–Charon system. Ann. Rev. Astron. Astrophys. 30, 185–233 (1992)

    Article  ADS  Google Scholar 

  • S.A. Stern, The New Horizons Pluto Kuiper belt mission: an overview with historical context. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9295-y

    Google Scholar 

  • S.A. Stern, A. Cheng, NASA plans Pluto–Kuiper belt mission. EOS 83, 101 (2002)

    Article  ADS  Google Scholar 

  • S.A. Stern, M.W. Buie, L.M. Trafton, HST high-resolution images and maps of Pluto. Astrophys. J. 113, 827 (1997a)

    ADS  Google Scholar 

  • S.A. Stern, W.B. McKinnon, J.L. Lunine, On the origin of Pluto, Charon, and the Pluto–Charon binary, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. Arizona Press, Tucson, 1997b), pp. 605–663

    Google Scholar 

  • S.A. Stern, M.J. Mutchler, H.A. Weaver, A.J. Steffl, The positions, colors, and photometric variability of Pluto’s small satellites from HST observations: 2005–2006. Lunar and Planetary Sci. Conference 38, no. 1722 (2007)

    Google Scholar 

  • S.A. Stern , Alice: The ultraviolet imaging spectrometer aboard the New Horizons Pluto–Kuiper belt mission. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9407-3

    Google Scholar 

  • M.E. Summers, D.F. Strobel, G.R. Gladstone, Chemical models of Pluto’s atmosphere, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. Arizona Press, Tucson, 1997), pp. 391–434

    Google Scholar 

  • D.T. Tholen, M.W. Buie, Bulk properties of Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 435–473

    Google Scholar 

  • F. Tian, B. Toon, Hydrodynamic escape of nitrogen from Pluto. Geophys. Res. Lett. 32, L18201 (2005)

    Article  ADS  Google Scholar 

  • L.M. Trafton, D.M. Hunten, K.J. Zahnle, R.L. McNutt Jr., Escape processes at Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. Arizona Press, Tucson, 1997), pp. 475–522

    Google Scholar 

  • L.M. Trafton, D.L. Matson, J.A. Stansberry, Surface/atmosphere interactions and volatile transport (Triton, Pluto and Io), in Solar System Ices, ed. by B. Schmitt, C. de Bergh, M. Festou (Kluwer, Dordrecht, 1998), p. 773

    Google Scholar 

  • K.A. Tryka, R.H. Brown, V. Anicich, Near-infrared absorption coefficients of solid nitrogen as a function of temperature. Icarus 116, 409–414 (1995)

    Article  ADS  Google Scholar 

  • L. Tyler , The Radio EXperiment (REX) on New Horizons. Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9302-3

    Google Scholar 

  • H.A. Weaver, S.A. Stern, M.J. Mutchler, A.J. Steffl, M.W. Buie, W.J. Merline, J.R. Spencer, E.F. Young, L.A. Young, The discovery of two new satellites of Pluto. Nature 439, 943 (2006)

    Article  ADS  Google Scholar 

  • P.R. Weissman, H.F. Levison, The population of the trans-neptunian region: the Pluto–Charon environment, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 559–604

    Google Scholar 

  • R.V. Yelle, J.L. Elliot, Atmospheric structure and composition: Pluto and Charon, in Pluto and Charon, ed. by S.A. Stern, D.J. Tholen (Univ. of Arizona Press, Tucson, 1997), pp. 347–390

    Google Scholar 

  • L.A. Young, J.L. Elliot, A. Tokunaga, C. de Bergh, T. Owen, Detection of gaseous methane on Pluto. Icarus 127, 258 (1997)

    Article  ADS  Google Scholar 

  • E.F. Young, K. Galdamez, M.W. Buie, R.P. Binzel, D.J. Tholen, Mapping the variegated surface of Pluto. Astron. J. 117, 1063–1076 (1999)

    Article  ADS  Google Scholar 

  • E.F. Young, R.P. Binzel, K. Crane, A two-color map of Pluto’s sub-Charon hemisphere. Astron. J. 121, 552–561 (2001a)

    Article  ADS  Google Scholar 

  • L.A. Young, J.C. Cook, R.V. Yelle, E.F. Young, Upper limits on gaseous CO at Pluto and Triton from high-resolution near-IR spectroscopy. Icarus 153, 148–156 (2001b)

    Article  ADS  Google Scholar 

  • L.A. Young, C.B. Olkin, E.F. Young, R.G. French, International Astronomical Union Circular 8570 (2005)

    Google Scholar 

  • E.F. Young , Vertical structure in Pluto’s atmosphere from the 12 June 2006 stellar occultation. Astron. J. 136, 1757–1769 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, BV

About this chapter

Cite this chapter

Young, L.A. et al. (2009). New Horizons: Anticipated Scientific Investigations at the Pluto System. In: Russell, C.T. (eds) New Horizons. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89518-5_6

Download citation

Publish with us

Policies and ethics