Skip to main content

The alpine life zone

  • Chapter
  • First Online:
Alpine Plant Life

Abstract

What does ‘alpine’ mean? One common explanation is that the term is of Latin origin and means ‘white’ or ‘snow-covered’ (from ‘albus’ = white, with reference to the North Italian peaks of the Alps as seen by the Romans; Löve in Arct Alp Res 2:63–73, 1970). However, today linguists consider this as purely coincidental and the term is most likely of pre-Roman origin, with ‘alp’ or ‘alb’ standing for ‘mountain’ in general. Even the Basques use ‘alpo’ for mountain flanks in their non-Indo-Germanic, ancient language. Traditional terms as Alpe/Alpes (Romanic languages), Alp (Swiss and other Alemannic regions), or Alm (Austrian or Bavarian) used by farmers in the Alps refer to man-made pastures for summer grazing at or below the upper treeline. In today’s common language ‘alpine’ is often applied to whole mountain regions including valleys and townships or is used as a general substitute for mountains. These uses of the word ‘alpine’ do not match the meaning of ‘alpine’ in the current context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RJ (2008) History, evolution and future of arctic and alpine flora: overview. Plant Ecol Divers 1:129–133

    Article  Google Scholar 

  • Abbott RJ, Chapman HM, Crawford RMM, Forbes DG (1995) Molecular diversity and deviations of populations of Silene acaulis and Saxifraga oppositifolia from the high Arctic and southern latitudes. Mol Ecol 4:199–207

    Article  CAS  Google Scholar 

  • Aegisdottir HH, Kuss P, Stöcklin J (2009) Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann Bot 104:1313–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agakhanyantz OE, Breckle SW (1995) Origin and evolution of the mountain flora in middle Asia and neighbouring mountain regions. In: Chapin FS III, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological studies, vol 113. Springer, Berlin, Heidelberg, New York, pp 63–80

    Google Scholar 

  • Ammann B (1995) Paleorecords of plant biodiversity in the Alps. In: Chapin FS III, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological studies, vol 113. Springer, Berlin, Heidelberg, New York, pp 137–149

    Google Scholar 

  • Anchisi E (1985) Quatrieme contribution à l’étude de la flore valaisanne. Bull Murithienne 102:115–126

    Google Scholar 

  • Bauert MR (1993) Vivipary in Polygonum viviparum: an adaptation to cold climate? Nord J Bot 13:473–480

    Article  Google Scholar 

  • Bauert MR, Kälin M, Baltisberger M, Edwards PS (1998) No genetic variation detected within isolated relict populations of Saxifraga cernua in the Alps using RAPD markers. Mol Ecol 7:1519–1527

    Article  CAS  Google Scholar 

  • Beck E (1988) Plant life on top of Mt. Kilimanjaro (Tanzania). Flora 181:379–381

    Article  Google Scholar 

  • Bezruchka S, Lyons A (2011) Trekking Nepal: a traveller’s guide, 8th edn. The Mountaineers Books

    Google Scholar 

  • Billings WD (1973) Arctic and alpine vegetations: similarities, differences, and susceptibility to disturbance. Bioscience 23:697–704

    Article  Google Scholar 

  • Billings WD (1974) Adaptations and origins of alpine plants. Arctic Alp Res 6:129–142

    Article  Google Scholar 

  • Billings WD (1978) Alpine phytogeography across the great basin. Great Basin Nat 2:105–117

    Google Scholar 

  • Billings WD (1979) High mountain ecosystems. Evolution, structure, operation and maintenance. In: Webber PJ (ed) High Altit Geoecol. AAAS Select Symp 12:97–125

    Google Scholar 

  • Billings WD (1988) Alpine vegetation. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation. Cambridge University Press, Cambridge, pp 392–420

    Google Scholar 

  • Birks HJB (1996) Statistical approaches to interpreting diversity patterns in the Norwegian mountain flora. Ecography 19:332–340

    Article  Google Scholar 

  • Birks HJB, Willis KJ (2008) Alpines, trees, and refugia in Europe. Plant Ecol Divers 1:147–160

    Article  Google Scholar 

  • Boucher FC, Lavergne S, Basile M, Choler P, Aubert S (2016) Evolution and biogeography of the cushion life form in angiosperms. Perspect Plant Ecol Evol Syst 20:22–31

    Article  Google Scholar 

  • Braun-Blanquet J (1923) Über die Genesis der Alpenflora. Verh Naturforsch Ges Basel 35:243–261

    Google Scholar 

  • Caprez R, Spehn E, Nakhutsrishvili G, Körner C (2012) Drought at erosion edges selects for a ‘hidden’ keystone species. Plant Ecol Divers

    Google Scholar 

  • Cavieres LA, Badano EI (2009) Do facilitative interactions increase species richness at the entire community level? J Ecol 97:1181–1191

    Article  Google Scholar 

  • Cernusca A (1976) Bestandesstruktur, Bioklima und Energiehaushalt von alpinen Zwergstrauchbeständen. Oecol Plant 11:71–102

    Google Scholar 

  • Comes HP, Kadereit JW (1998) The effect of Quarternary climatic changes on plant distribution and evolution: a molecular perspective. Trends Plant Sci 3:432–438

    Article  Google Scholar 

  • Corbin JD, Thiet RK (2020) Temperate biocrusts: mesic counterparts to their better-known dryland cousins. Front Ecol Environ 18:456–464

    Google Scholar 

  • Costin AB, Gray M, Totterdell CJ, Wimbush DJ (1979) Kosciusko alpine flora. CSIRO and Collins, Melbourne

    Book  Google Scholar 

  • Cuatrecasas J (1986) Speciation and radiation of the Espeletiinae in the Andes. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, New York, pp 267–303

    Google Scholar 

  • Dahl E (1987) The Nunatak theory reconsidered. Ecol Bull 38:77–94

    Google Scholar 

  • Dahl E (1990) History of the Scandinavian alpine flora. In: Gjaerevoll O (ed) Alpine plants. The Royal Norwegian Society of Science and Tapir Publishers, Trondheim, pp 16–21

    Google Scholar 

  • Darwin CR (1859) XII. Geographical distribution: dispersal during the glacial period. In: Darwin (ed) Origin of species. The Harvard Classics

    Google Scholar 

  • de Witte LC, Armbruster GFJ, Gielly L, Taberlet P, Stöcklin J (2012) AFLP markers reveal high clonal diversity and extreme longevity in four key arctic-alpine species. Mol Ecol 21:1081–1097

    Article  PubMed  Google Scholar 

  • Ding WN, Ree RH, Spicer RA, Xing YW (2020) Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369:578–581

    Google Scholar 

  • Favarger C (1961) Sur l’emploi des nombres des chromosomes en géographie botanique historique. Ber Geobot Inst ETH (Stiftung Rübel, Zürich) 32:119–146

    Google Scholar 

  • Flenley JR (1992) Ultraviolet-B insolation and the altidudinal forest limit. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest savanna boundaries. Chapman and Hall, London, pp 273–282

    Google Scholar 

  • Gams H (1933) Der tertiäre Grundstock der Alpenflora. Der Begriff des alpigenen Florenelements. Jahrb Verein Schutz Alpenpflanz Tiere 5:7–37

    Google Scholar 

  • Gams H (1963) Die Herkunft der hochalpinen Moose und Flechten. Jahrb Verein Schutz Alpenpflanz Tiere 28

    Google Scholar 

  • Geissler P, Velluti C (1996) L’écocline subalpin-alpin: approche par les bryophythes. Bull Murithienne 114:171–177

    Google Scholar 

  • Givnish TJ (2010) Ecology of plant speciation. Taxon 59:1326–1366

    Article  Google Scholar 

  • Gjaerevoll O (1990) Alpine plants. The Royal Norwegian Society of Sciences and Tapir Publishers, Trondheim

    Google Scholar 

  • Gjaerevoll O, Ryvarden L (1977) Botanical investigations on J.A.D. Jensens Nunatakker in Greenland. K nor Vidensk Selsk Skr 4:1–40

    Google Scholar 

  • Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. In: Chapin FS III, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological studies, vol 113. Springer, Berlin, Heidelberg, New York, pp 167–181

    Google Scholar 

  • Grytnes JA (2003) Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26:291–300

    Article  Google Scholar 

  • Gugerli F, Eichenberger K, Schneller JJ (1999) Promiscuity in populations of the cushion plant Saxifraga oppositifolia in the swiss Alps as inferred from random amplified polymorphic DNA (APD). Mol Ecol 8:453–461

    Article  CAS  Google Scholar 

  • Gugerli F, Holderegger R (2001) Nunatak survival, tabula rasa and the influence of the Pleistocene ice-ages on plant evolution in mountain areas. Trends Plant Sci 6:397–398

    Article  CAS  PubMed  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Gupta RK (1972) Boreal and arcto-alpine elements in the flora of western Himalaya. Vegetatio 24:159–175

    Article  Google Scholar 

  • Hadley KS (1987) Vascular alpine plant distributions within the central and southern Rocky Mountains, USA. Arct Alp Res 19:242–251

    Article  Google Scholar 

  • Halloy SRP (1982) Climatologia y edafologia de alta montana en relacion con la composicion y adaptacion de las comunidades bioticas (con especial referencia a las Cumbres Calchaquies, Tucuman, Argentina). PhD Thesis, San Miguel Tucuman. University Microfilm International, Ann Arbor, no 8502967

    Google Scholar 

  • Halloy SRP (1989) Altitudinal limits of life in subtropical mountains: what do we know? Pacific Sci 43:170–184

    Google Scholar 

  • Halloy SRP (1990) A morphological classification of plants, with special reference to the New Zealand alpine flora. J Veg Sci 1:291–304

    Article  Google Scholar 

  • Halloy SRP (1991) Islands of life at 6000 m altitude: the environment of the highest autotrophic communities on earth (Socompa Volcano, Andes). Arct Alp Res 23:247–262

    Article  Google Scholar 

  • Hartman EL, Rottman ML (1987) Alpine vascular flora of the Ruby Range, West Elk Mountains, Colorado. Great Basin Nat 47:152–160

    Google Scholar 

  • Hartmann H (1957) Studien über die vegetative Fortpflanzung in den Hochalpen. Jahresber Naturf Ges Graubünden 86:3–168

    Google Scholar 

  • Hedberg I, Hedberg O (1979) Tropical-alpine life-forms of vascular plants. Oikos 33:297–307

    Article  Google Scholar 

  • Hedberg O (1957) Afro-Alpine vascular plants. Symb Bot Ups 15:1–411

    Google Scholar 

  • Hedberg O (1964) Features of afroalpine plant ecology. Acta Phytogeogr Suec 139

    Google Scholar 

  • Hedberg O (1970) Evolution of the afro-alpine flora. Biotropica 2:16–23

    Article  Google Scholar 

  • Hefel C, Stöcklin J (2010) Flora der Furka. Bauhinia 22:33–59

    Google Scholar 

  • Hemp A (2005) Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Glob Change Biol 11:1013–1023

    Article  Google Scholar 

  • Hermes K (1955) Die Lage der oberen Waldgrenze in den Gebirgen der Erde und ihr Abstand zur Schneegrenze. Kölner geographische Arbeiten, Heft 5. Geographisches Institut, University of Köln

    Google Scholar 

  • Hoorn C, Perrigo A, Antonelli A (2018) Mountains, climate and biodiversity: an introduction. Wiley-Blackwell, London

    Google Scholar 

  • Hübl E (1985) Zu den nordischen Beziehungen der Vegetation der Alpen. Flora 176:309–323

    Article  Google Scholar 

  • Huck C, Körner C, Hiltbrunner E (2013) Plant species dominance shifts across erosion edge-meadow transects in the Swiss Alps. Oecologia 171:693–703

    Article  PubMed  Google Scholar 

  • Hungerer KB, Kadereit JW (1998) The phylogeny and biogeography of Gentiana L. sect. Ciminalis (Adans.) Dumort.: a historical interpretation of distribution ranges in the European high mountains. Perspect Plant Ecol Evol Syst 1:121–135

    Article  Google Scholar 

  • Jackson LE, Bliss LC (1982) Distribution of ephemeral herbaceous plants near treeline in the Sierra Nevada, California, USA. Arct Alp Res 14:33–42

    Article  Google Scholar 

  • Jerosch MC (1903) Geschichte und Herkunft der schweizerischen Alpenflora. Eine Übersicht über den gegenwärtigen Stand der Frage. Engelmann, Leipzig

    Google Scholar 

  • Johnson PL, Billings WD (1962) The alpine vegetation of the Beartooth Plateau in relation to cryopedogenic processes and patterns. Ecol Monogr 32:105–135

    Article  Google Scholar 

  • Jolls CL, Bock AH (1983) Seedling density and mortality patterns among elevations in Sedum lanceolatum. Arct Alp Res 15:119–126

    Article  Google Scholar 

  • Klimes L, Dolezal J (2010) An experimental assessment of the upper elevational limit of flowering plants in the western Himalayas. Ecography 33:590–596

    Google Scholar 

  • Klötzli FA (1991) Dornpolster und Kissenpolster – zwei divergierende Adaptationen. Festschrift Zoller, Diss Bot 196:155–162

    Google Scholar 

  • Körner C (1989) Der Flächenanteil unterschiedlicher Vegetationseinheiten in den Hohen Tauern: eine quantitative Analyse großmaßstäblicher Vegetationskartierungen in den Ostalpen. In: Cernusca A (ed) Struktur und Funktion von Graslandökosystemen im Nationalpark Hohe Tauern. Veröffent Österr MaB-Programms, vol 13. Österr Akad Wiss and Wagner, Innsbruck, pp 33–47

    Google Scholar 

  • Körner C (1993) Scaling from species to vegetation: the usefulness of functional groups. In: Schulze ED, Mooney HA (eds) Biodiversity and Ecosystem Function. Ecol Studies 99:117–140, Springer, Berlin

    Google Scholar 

  • Körner C (1994) Biomass fractionation in plants: a reconsideration of definitions based on plant functions. In: Roy J, Garnier E (eds) A whole plant perspective on carbon-nitrogen interactions. SPB Academic Publishers, The Hague, pp 173–185

    Google Scholar 

  • Körner C (1995) Alpine plant diversity: a global survey and functional interpretations. In: Chapin FS III, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological studies, vol 113. Springer, Berlin Heidelberg New York, pp 45–62

    Google Scholar 

  • Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 15:513–514

    Article  Google Scholar 

  • Körner C (2002) Mountain biodiversity, its causes and function: an overview. In: Körner C, Spehn EM (eds) Mountain biodiversity. A global assessment. Parthenon, New York, pp 3–20

    Google Scholar 

  • Körner C (2004) Mountain biodiversity, its causes and function. Ambio Spec Rep 13:11–17

    Google Scholar 

  • Körner C (2009) Global statistics of ‘mountain’ and ‘alpine’ research. Mountain Res Develop 29:97–102

    Google Scholar 

  • Körner C (2011) Coldest places on earth with angiosperm plant life. Alp Bot 121:11–22

    Article  Google Scholar 

  • Körner C (2012) Alpine treelines. Springer, Basel

    Book  Google Scholar 

  • Körner C (2018) Concepts in empirical plant ecology. Plant Ecol Divers 11:405–428

    Article  Google Scholar 

  • Körner C, Hiltbrunner E (2018) The 90 ways to describe plant temperature. Perspect Plant Ecol Evol Syst 30:16–21

    Article  Google Scholar 

  • Körner C, Meusel H (1986) Zur ökophysiologischen und öko-geographischen Differenzierung nah verwandter Carlina-Arten. Flora 178:209–232

    Article  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Körner C, Renhardt U (1987) Dry matter partitioning and root length/leaf area ratios in herbaceous perennial plants with diverse altitudinal distribution. Oecologia 74:411–418

    Article  PubMed  Google Scholar 

  • Körner C, Paulsen J, Spehn EM (2011) A definition of mountains and their bioclimatic belts for global comparison of biodiversity data. Alp Botany 121:73–78

    Article  Google Scholar 

  • Körner C, Leuzinger S, Riedl S, Siegwolf RT, Streule L (2016a) Carbon and nitrogen stable isotope signals for an entire alpine flora, based on herbarium samples. Alp Bot 126:153–166

    Article  Google Scholar 

  • Körner C, Basler D, Hoch G, Kollas C, Lenz A, Randin CF, Vitasse Y, Zimmermann NE (2016b) Where, why and how? Explaining the low-temperature range limits of temperate tree species. J Ecol 104:1076–1088

    Article  CAS  Google Scholar 

  • Körner C, Jetz W, Paulsen J, Payne D, Rudmann-Maurer K, Spehn EM (2017) A global inventory of mountains for bio-geographical applications. Alp Bot 127:1–15

    Article  Google Scholar 

  • Kuss P, Armbruster GFJ, Aegisdottir HH, Scheepens JF, Stöcklin J (2011) Spatial genetic structure of Campanula thyrsoides across the European Alps: indication for glaciation-driven allopatric subspeciation. Perspect Plant Ecol Evol Syst 13:101–110

    Article  Google Scholar 

  • Landolt E (1983) Probleme der Höhenstufen in den Alpen. Botanica Helv 93:255–268

    Google Scholar 

  • Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18

    Article  Google Scholar 

  • Larcher W, Wagner J (1983) Ökologischer Zeigerwert und physiologische Konstitution von Sempervivum montanum. Verh Ges Ökol 11:253–264

    Google Scholar 

  • Lauer W (1988) Zum Wandel der Vegetationszonierung in den Lateinamerikanischen Tropen seit dem Höhepunkt der letzten Eiszeit. In: Buchholz HJ, Gerold G (eds) Jahrbuch der Geographischen Gesellschaft zu Hannover, Lateinamerikaforschung, Hannover. Selbstverlag der Geographischen Gesellschaft, Hannover, pp 1–45

    Google Scholar 

  • Lavin M (1983) Floristics of the upper Walker River, California and Nevada. Great Basin Nat 43:93–130

    Google Scholar 

  • Löve D (1970) Subarctic and subalpine: where and what? Arct Alp Res 2:63–73

    Article  Google Scholar 

  • Mabberley DJ (1986) Adaptive syndromes of the afroalpine species of Dendrosenecio. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, New York, pp 81–102

    Google Scholar 

  • Mark AF (1995) The New Zealand alpine flora and vegetation. Quat Bull Alp Garden Soc 63:245–259

    Google Scholar 

  • Mark AF, Adams NM (1979) New Zealand alpine plants, 2nd edn. Reed, Wellington

    Google Scholar 

  • Mark AF, Dickinson KJM, Hofstede RGM (2000) Alpine vegetation, plant distribution, life forms, and environments in a perhumid New Zealand region: oceanic and tropical high mountain affinities. Arct Antarct Alp Res 32:240–254

    Article  Google Scholar 

  • Martin C, Pohl M, Alewell C, Körner C, Rixen C (2010) Interrill erosion at disturbed alpine sites: effects of plant functional diversity and vegetation cover. Basic Appl Ecol 11:619–626

    Article  Google Scholar 

  • Matteodo M, Wipf S, Stöckli V, Rixen C, Vittoz P (2013) Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ Res Lett 8

    Google Scholar 

  • McVicar TR, Körner C (2013) On the use of elevation, altitude, and height in the ecological and climatological literature. Oecologia 171:335–337

    Article  PubMed  Google Scholar 

  • Medina E, Delgado M (1976) Photosynthesis and night CO2 fixation in Echeveria columbiana v Poellnitz. Photosynthetica 10:155–163

    CAS  Google Scholar 

  • Merxmueller H (1952–1954) Untersuchungen zur Sippengliederung und Arealbildung in den Alpen. Jahrb Verein Schutz Alpenpflanz Tiere 17:88–105, 18:135–158, 19:97–139

    Google Scholar 

  • Merxmüller H, Poelt J (1954) Beiträge zur Florengeschichte der Alpen. Ber Bayer Bot Ges 30:91–101

    Google Scholar 

  • Messerli B (1983) Stability and instability of mountain ecosystems: introduction to a workshop sponsored by the United Nations University. Mountain Res Dev 3:81–94

    Article  Google Scholar 

  • Miehe G, Schleuss PM, Seeber E, Babel W, Biermann T, Braendle M, Chen FH, Coners H, Foken T, Gerken T, Graf HF, Guggenberger G, Hafner S, Holzapfel M, Ingrisch J, Kuzyakov Y, Lai ZP, Lehnert L, Leuschner C, Li XG, Liu JQ, Liu SB, Ma YM, Miehe S, Mosbrugger V, Noltie HJ, Schmidt J, Spielvogel S, Unteregelsbacher S, Wang Y, Willinghöfer S, Xu XL, Yang YP, Zhang SR, Opgenoorth L, Wesche K (2019) The Kobresia pygmaea ecosystem of the Tibetan highlands—origin, functioning and degradation of the world’s largest pastoral alpine ecosystem Kobresia pastures of Tibet. Sci Total Environ 648:754–771

    Article  CAS  PubMed  Google Scholar 

  • Miehe G (1989) Vegetation patterns on Mount Everest as influenced by monsoon and fohn. Vegetatio 79:21–32

    Article  Google Scholar 

  • Miehe G (1991) Der Himalaya, eine multizonale Gebirgsregion. In: Walter H, Breckle SW (eds) Ökologie der Erde, vol 4: Spezielle Ökologie der gemäßigten und arktischen Zonen außerhalb Euro-Nordasiens. Fischer, Stuttgart, pp 181–230

    Google Scholar 

  • Monasterio M (1986) Adaptive strategies of Espeletia in the Andean desert páramo. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, New York, pp 49–80

    Google Scholar 

  • Monteiro JAF, Hiltbrunner E, Körner C (2011) Functional morphology and microclimate of festuca orthophylla, the dominant tall tussock grass in the Andean Altiplanto. Flora 206:387–396

    Article  Google Scholar 

  • Mooney HA, Lubchenco J, Dirzo R, Sala OE (1995) Biodiversity and ecosystem functioning: Ecosystem Analysis. In: Heywood VH (ed) Global biodiversity assessment. Cambridge University Press, pp 328–452

    Google Scholar 

  • Nakhutsrishvili G, Abdaladze O, Batsatsashvili K, Spehn E, Körner C (2017) Plant diversity in the Central Great Caucasus: a quantitative assessment. Springer, Cham

    Book  Google Scholar 

  • Nilsson O (1986) Nordisk fjällflora. Bonniers, Göteborg

    Google Scholar 

  • Normand S, Treier UA, Randin C, Vittoz P, Guisan A, Svenning JC (2009) Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients. Glob Ecol Biogeogr 18:437–449

    Google Scholar 

  • Noroozi J, Körner C (2018) A bioclimatic characterization of high elevation habitats in the Alborz mountains of Iran. Alp Bot 128:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Oehl F, Körner C (2014) Multiple mycorrhization at the coldest place known for Angiosperm plant life. Alp Bot 124:193–198

    Article  Google Scholar 

  • Ozenda P (1988) Die Vegetation der Alpen im europäischen Gebirgsraum. Fischer, Stuttgart

    Google Scholar 

  • Ozenda P (1993) Etage alpin et toundra de montagne: parente ou convergence? Fragm Florist Geobot Suppl (Krakow) 2:457–471

    Google Scholar 

  • Packer JG (1974) Differentiation and dispersal in alpine floras. Arct Alp Res 6:117–128

    Article  Google Scholar 

  • Patsiou TS, Conti E, Theodoridis S, Randin CF (2017) The contribution of cold air pooling to the distribution of a rare and endemic plant of the Alps. Plant Ecol Diversity 10:29–42

    Article  Google Scholar 

  • Patty L, Halloy SRP, Hiltbrunner E, Körner C (2010) Biomass allocation in herbaceous plants under grazing impact in the high semi-arid Andes. Flora 205:695–703

    Article  Google Scholar 

  • Paulsen J, Körner C (2014) A climate-based model to predict potential treeline position around the globe. Alp Bot 124:1–12

    Article  Google Scholar 

  • Pignatti E, Pignatti S (1983) La vegetazione delle Vette di Feltre al di sopra del limite degli alberi. Stud Geobot 3:7–57

    Google Scholar 

  • Pluess AR, Stöcklin J (2004) Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Am J Bot 91:2013–2021

    Article  PubMed  Google Scholar 

  • Pohl M, Stroude R, Buttler A, Rixen C (2011) Functional traits and root morphology of alpine plants. Ann Bot 108:537–545

    Google Scholar 

  • Polk MH, Young KR, Cano A, Léon B (2019) Vegetation of Andrean wetlands (bofedales) in Huascaràn National Park, Peru. Mires Peats 24:1–26

    Google Scholar 

  • Polunin O, Stainton A (1988) Flowers of the Himalaya. Oxford University Press, Oxford

    Google Scholar 

  • Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205

    Article  Google Scholar 

  • Randin CF, Dirnbock T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703

    Article  Google Scholar 

  • Randin CF, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vittoz P, Thuiller W, Guisan A (2009) Climate change and plant distribution: local models predict high-elevation persistence. Glob Change Biol 15:1557–1569

    Article  Google Scholar 

  • Rauh W (1940) Die Wuchsformen Der Polsterpflanzen. Bot Arch 40:289–462

    Google Scholar 

  • Rauh W (1978) Die Wuchs- und Lebensformen der tropischen Hochgebirgsregionen und der Subantarktis, ein Vergleich. In: Troll C, Lauer W (eds) Geoecological relations between the southern temperate zone and the tropical mountains. Steiner, Wiesbaden, pp 62–92

    Google Scholar 

  • Raven PH (1973) Evolution of subalpine and alpine groups in New Zealand. N Z J Bot 11:177–200

    Article  Google Scholar 

  • Rawat GS, Pangtey YPS (1987) Floristic structure of snowline vegetation in central Himalaya, India. Arct Alp Res 19:195–201

    Article  Google Scholar 

  • Reisigl H, Pitschmann H (1958) Obere Grenzen von Flora und Vegetation in der Nivalstufe der zentralen Ötztaler Alpen (Tirol). Vegetatio 8:93–129

    Article  Google Scholar 

  • Rundel PW, Smith AP, Meinzer FC (1994) Tropical alpine environments. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Salgado-Labouriau ML (1986) Late Quaternary paleoecology of Venezuelan high mountains. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, New York, pp 202–217

    Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Article  Google Scholar 

  • Scherrer D, Schmid S, Körner C (2011) Elevational species shifts in a warmer climate are overestimated when based on weather station data. Int J Biometeorol 55:645–654

    Article  PubMed  Google Scholar 

  • Schönswetter P, Tribsch A, Stehlik I, Niklfeld H (2004) Glacial history of high alpine Ranunculus glacialis (Ranunculaceae) in the European Alps in a comparative phylogeographical context. Biol J Linnean Soc 81:183–195

    Article  Google Scholar 

  • Schroeter C (1908/1926) Das Pflanzenleben der Alpen. Eine Schilderung der Hochgebirgsflora. Raustein, Zürich

    Google Scholar 

  • Simpson BB, Todzia CA (1990) Patterns and processes in the development of the high Andean flora. Am J Bot 77:1419–1432

    Article  Google Scholar 

  • Smith AP (1994) Introduction to tropical alpine vegetation. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 1–19

    Google Scholar 

  • Song B, Zhang ZQ, Stöcklin J, Yang Y, Niu Y, Chen JG, Sun H (2013) Multifunctional bracts enhance plant fitness during flowering and seed development in Rheum nobile (Polygonaceae), a giant herb endemic to the high Himalayas. Oecologia 172:359–370

    Article  PubMed  Google Scholar 

  • Spence JR, Shaw RJ (1981) A checklist of the alpine vascular flora of the Teton Range, Wyoming, with notes on biology and habitat preferences. Great Basin Nat 41:232–242

    Google Scholar 

  • Spomer GG (1964) Physiological ecology studies of alpine cushion plants. Physiol Plant 17:717–724

    Article  Google Scholar 

  • Stehlik I, Holderegger R, Schneller JJ, Abbott RJ, Bachmann K (2000) Molecular biogeography and population genetics of alpine plant species. Bull Geobot Inst ETH 66:47–59

    Google Scholar 

  • Steiner BL, Armbruster GFJ, Scheepens JF, Stocklin J (2012) Distribution of bulbil- and seed-producing plants of Poa alpina (Poaceae) and their growth and reproduction in common gardens suggest adaptation to different elevations. Am J Bot 99:2035–2044

    Article  CAS  PubMed  Google Scholar 

  • Steinger T, Körner C, Schmid B (1996) Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia 105:94–99

    Article  PubMed  Google Scholar 

  • Stöcklin J, Armbruster GFJ (2016) Environmental filtering, not local adaptation of established plants, determines the occurrence of seed- and bulbil-producing Poa alpina in a local flora. Basic Appl Ecol 17:586–595

    Article  Google Scholar 

  • Stöcklin J, Kuss P, Pluess AR (2009) Genetic diversity, phenotypic variation and local adaption in the alpine landscape: case studies with alpine plant species. Bot Helv 119:125–133

    Article  Google Scholar 

  • Swan LW (1992) The aeolian biome. Ecosystems of the earth’s Extremes. Bioscience 42:262–270

    Article  Google Scholar 

  • Tatewaki M (1968) Distribution of alpine plants in northern Japan. In: Wright HE Jr, Osburn WH (eds) Arctic and alpine environments. Indiana University Press, Bloomington, pp 119–136

    Google Scholar 

  • Theurillat JP, Schlüssel A (1996) L’écocline subalpin-alpin: diversite et phenologie des plantes vasculaires. Bull Murithienne 114:163–169

    Google Scholar 

  • Thuiller W, Albert C, Araujo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgely GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152

    Article  Google Scholar 

  • Till-Bottraud I, Gaudeul M (2002) Intraspecific genetic diversity in alpine plants. In: Körner C, Spehn E (eds) Mountain biodiversity. A global assessment. Parthenon, New York, pp 23–34

    Google Scholar 

  • Troll C (1961) Klima und Pflanzenkleid der Erde in dreidimensionaler Sicht. Naturwissenschaften 9:332–348

    Article  Google Scholar 

  • Troll C (1968) The Cordilleras of the tropical Americas. In: Troll C (ed) Geo-ecology of the mountainous regions of the tropical Americas. Dümmler, Bonn, pp 15–55

    Google Scholar 

  • Troll C (1973) The upper timberlines in different climatic zones. Arct Alp Res 5:A3–A18

    Google Scholar 

  • Troll C, Lauer W (eds) (1978) Geoökologische Beziehungen zwischen der temperierten Zone der Südhalbkugel und den Tropengebieten. Steiner, Wiesbaden

    Google Scholar 

  • Van der Hammen T, Cleef AM (1986) Development of the high Andean páramo flora and vegetation. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, New York, pp 153–201

    Google Scholar 

  • Vareschi V (1970) Flora de los Páramos de Venezuela. Universidad de los Andes, Merida, Venezuela

    Google Scholar 

  • Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob Ecol Biogeogr 11:291–301

    Article  Google Scholar 

  • Viviroli D, Weingartner R, Messerli B (2003) Assessing the hydrological significance of the world’s mountains. Mt Res Dev 23:32–40

    Article  Google Scholar 

  • Vuilleumier BS (1971) Pleistocene changes in the fauna and flora of South America. Science 183:771–780

    Article  Google Scholar 

  • Walker MD (1995) Patterns and causes of arctic plant community diversity. In: Chapin FS III, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological studies, vol 113. Springer, Berlin, Heidelberg, New York, pp 3–20

    Google Scholar 

  • Wardle P (1974) Alpine timberlines. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 371–402

    Google Scholar 

  • Webster GL (1961) The altitudinal limits of vascular plants. Ecology 42:587–590

    Article  Google Scholar 

  • Werner P (1988) La flore. Pillet, Martigny

    Google Scholar 

  • Wipf S, Stöckli V, Herz K, Rixen C (2013) The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecol Divers 6:447–455

    Article  Google Scholar 

  • Wohlgemuth T (1993) Der Verbreitungsatlas der Farn- und Blütenpflanzen der Schweiz (Welten und Sutter 1982) auf EDV: Die Artenzahlen und ihre Abhängigkeit von verschiedenen Faktoren. Bot Helv 103:55–71

    Google Scholar 

  • Yang Y, Körner C, Sun H (2008) The ecological significance of pubescence in Saussurea medusa, a high-elevation Himalayan “woolly plant.” Arct Antarct Alp Res 40:250–255

    Article  Google Scholar 

  • Yoshimura Y, Koshima S (1997) A community of snow algae on a Himalayan glacier: change of algal biomass and community structure with altitude. Arct Alp Res 29:126–137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Körner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Körner, C. (2021). The alpine life zone. In: Alpine Plant Life. Springer, Cham. https://doi.org/10.1007/978-3-030-59538-8_2

Download citation

Publish with us

Policies and ethics