Skip to main content

Mercury in Aquatic Systems of North Patagonia (Argentina): Sources, Processes, and Trophic Transfer

  • Chapter
  • First Online:
Freshwaters and Wetlands of Patagonia

Abstract

Andean Patagonian catchments comprise large freshwater networks along a sharp west-to-east bioclimatic gradient. The Nahuel Huapi National Park (Argentina) includes the headwaters of the largest fluvial network of North Patagonia characterized by mountain and piedmont aquatic systems draining toward the Atlantic and Pacific oceans. Several studies in the region have recorded moderate to high mercury (Hg) levels in different environmental compartments of Andean catchments. Lake sediment sequences have revealed that the departure of Hg concentrations from background levels, attributable to global circulation of this toxic metal, is connected to frequent disturbances caused by active volcanoes of the Andean belt (Southern Volcanic Zone of South America) and wildfires. Freshwaters of the region are oligo- to ultraoligotrophic, with extremely low concentrations of dissolved organic matter, displaying high total Hg to dissolved organic carbon ratios which reflect in high Hg availability. This work reviews the evidence from different studies performed in Nahuel Huapi lake catchment, which explored the sources of Hg, the terrestrial and aquatic pathways of its biogeochemical cycling, as well as its circulation in lake food webs. Moreover, potential changes in the cycle of Hg in Andean Patagonian catchments are discussed in the context of the global and regional climate trends. In this regard, changes in Hg cycling in ecosystems of the region are expected to be manyfold because different components influencing this process (Hg stored in ecosystems, processing rates, the lateral transport to aquatic end points, methylation, etc.) are climate-sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman JT, Eagles-Smith CA, Herzog MP et al (2016) Avian mercury exposure and toxicological risk across western North America: a synthesis. Sci Total Environ 568:749–769

    CAS  Google Scholar 

  • AMAP/UNEP (2013) Technical Background Report for the Global Mercury Assessment 2013. Arctic Monitoring and Assessment Programme, Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland. p 263

    Google Scholar 

  • Arcagni M, Campbell LM, Arribére MA et al (2013a) Food web structure in a double-basin ultra-oligotrophic lake in Northwest Patagonia, Argentina, using carbon and nitrogen stable isotopes. Limnologica 43:131–142

    CAS  Google Scholar 

  • Arcagni M, Campbell LM, Arribére MA et al (2013b) Differential mercury transfer in the aquatic food web of a double basined lake associated with selenium and habitat. Sci Total Environ 454–455:170–180

    Google Scholar 

  • Arcagni M, Rizzo AP, Campbell LM et al (2015) Stable isotope analysis of trophic structure, energy flow and spatial variability in a large ultraoligotrophic lake in Northwest Patagonia. J Great Lakes Res 41:916–925

    Google Scholar 

  • Arcagni M, Rizzo AP, Juncos R et al (2017) Mercury and selenium in the food web of Lake Nahuel Huapi, Patagonia, Argentina. Chemosphere 166:163–173

    CAS  Google Scholar 

  • Arcagni M, Juncos R, Rizzo AP et al (2018) Species- and habitat-specific bioaccumulation of total mercury and methylmercury in the food web of a deep oligotrophic lake. Sci Total Environ 612:1311–1319

    CAS  Google Scholar 

  • Arcagni M, Soto Cárdenas C, Fajon V et al (2019) Mercury in aquatic systems of Nahuel Huapi National Park: a natural biogeochemical hotspot in northern Patagonia. Abstracts of the 14th international conference on mercury as a global pollutant. Krakow, Poland 8-13 September

    Google Scholar 

  • Arribére M, Diéguez MC, Ribeiro Guevara S et al (2010) Mercury in an ultraoligotrophic North Patagonian Andean lake (Argentina): concentration patterns in different components of the water column. J Environ Sci 22:1171–1178

    Google Scholar 

  • Aydin H, Yürür EE, Uzar S et al (2015) Impact of industrial pollution on recent dinoflagellate cysts in Izmir Bay (Eastern Aegean). Mar Pollut Bull 94:144–152

    CAS  Google Scholar 

  • Bargagli R (2016) Moss and lichen biomonitoring of atmospheric mercury: a review. Sci Total Environ 572:216–231

    CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    CAS  Google Scholar 

  • Barros VR, Boninsegna JA, Camilloni IA et al (2015) Climate change in Argentina: trends, projections, impacts and adaptation. WIREs Clim Change 6:151–169

    Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S et al (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100

    CAS  Google Scholar 

  • Beckers F, Rinklebe J (2017) Cycling of mercury in the environment: sources, fate, and human health - A review. Crit Rev Environ Sci Technol 47:693–794

    CAS  Google Scholar 

  • Beigt D, Villarosa G, Outes V et al (2019) Remobilized Cordón Caulle 2011 tephra deposits in North Patagonian watersheds: Resedimentation at deltaic environments and its implications. Geomorphology 341:140–152

    Google Scholar 

  • Berenstecher P, Gangi D, Gonzalez-Arzac A et al (2017) Litter microbial and soil faunal communities stimulated in the wake of a volcanic eruption in a semi-arid woodland in Patagonia, Argentina. Funct Ecol 31:245–259

    Google Scholar 

  • Biester H, Pérez-Rodríguez M, Gilfedder BS et al (2018) Solar irradiance and primary productivity controlled mercury accumulation in sediments of a remote lake in the Southern Hemisphere during the past 4000 years. Limnol Oceanogr 63:540–549

    CAS  Google Scholar 

  • Bishop K, Shanley JB, Riscassi A et al (2020) Recent advances in understanding and measurement of mercury in the environment: terrestrial Hg cycling. Sci Total Environ 721:137647

    CAS  Google Scholar 

  • Braaten HFV, Lindholm M, de Wit HA (2020) Five decades of declining methylmercury concentrations in boreal food webs suggest pivotal role for sulphate deposition. Sci Total Environ 714:136774

    CAS  Google Scholar 

  • Branfireun BA, Cosio C, Poulain AJ et al (2020) Mercury cycling in freshwater systems - An updated conceptual model. Sci Total Environ 745:140906

    CAS  Google Scholar 

  • Bravo AG, Cosio C (2019) Biotic formation of methylmercury: a bio–physico–chemical conundrum. Limnol Oceanogr 9999:1–18

    Google Scholar 

  • Bravo AG, Bouchet S, Tolu J, et al (2017) Molecular composition of organic matter controlsmethylmercury formation in boreal lakes. Nat Commun 8:14255

    Google Scholar 

  • Bubach D, Arribére MA, Ribeiro Guevara S et al (2001) Study on the feasibility of using transplanted Protousnea magellanica thalli as a bioindicator of atmospheric contamination. J Radioanal Nucl Chem 250:63–68

    CAS  Google Scholar 

  • Bubach D, Catán SP, Arribére M et al (2012) Bioindication of volatile elements emission by the Puyehue–Cordón Caulle (North Patagonia) volcanic event in 2011. Chemosphere 88:584–590

    CAS  Google Scholar 

  • Bubach D, Dufou L, Catán SP (2014) Evaluation of dispersal volcanic products of recent events in lichens in environmental gradient, Nahuel Huapi National Park, Argentina. Environ Monit Assess 186:4997–5007

    CAS  Google Scholar 

  • Bushey JT, Driscoll CT, Mitchell MJ et al (2008) Mercury transport in response to storm events from a northern forest landscape. Hydrol Process 22:4813–4826

    CAS  Google Scholar 

  • Callieri C, Modenutti B, Queimaliños C et al (2007) Production and biomass of picophytoplankton and larger autotrophs in Andean ultra- oligotrophic lakes: differences in light harvesting efficiency in deep layers. Aquat Ecol 41:511–523

    CAS  Google Scholar 

  • Chen CY, Borsuk ME, Bugge DM et al (2014) Benthic and pelagic pathways of methylmercury bioaccumulation in estuarine food webs of the northeast United States. PLoS One 9:e89305

    Google Scholar 

  • Chételat J, Amyot M, Garcia E (2011) Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America. Environ Pollut 159:10–17

    Google Scholar 

  • Chételat J, Ackerman JT, Eagles-Smith CA et al (2020) Methylmercury exposure in wildlife: a review of the ecological and physiological processes affecting contaminant concentrations and their interpretation. Sci Total Environ 711:135117

    Google Scholar 

  • Chiaia-Hernandez AC, Ashauer R, Moest M et al (2013) Bioconcentration of organic contaminants in Daphnia resting eggs. Environ Sci Technol 47:10667–10675

    CAS  Google Scholar 

  • Chumchal MM, Drenner RW, Fry B et al (2008) Habitat-specific differences in mercury concentration in a top predator from a shallow lake. Trans Am Fish Soc 137:195–208

    Google Scholar 

  • Cooke CA, Martínez-Cortizas A, Bindler R et al (2020) Environmental archives of atmospheric Hg deposition – A review. Sci Total Environ 709:134800

    CAS  Google Scholar 

  • Daga R, Ribeiro Guevara S, Sanchez ML et al (2008) Source identification of volcanic ashes by geochemical analysis of well-preserved lacustrine tephras in. Nahuel Huapi National Park. Appl Radiat Isot 66:1325–1336

    CAS  Google Scholar 

  • Daga R, Ribeiro Guevara S, Pavlin M et al (2016) Historical records of mercury in southern latitudes over 1600 years: lake Futalaufquen. Northern Patagonia. Sci Total Environ 553:541–550

    CAS  Google Scholar 

  • Dastoor AP, Larocque Y (2004) Global circulation of atmospheric mercury: a modeling study. Atmos Environ 38:147–161

    CAS  Google Scholar 

  • Diaz MM, Pedrozo FL, Temporetti PF (1998) Phytoplankton of two Araucanian lakes of differing trophic status (Argentina). Hydrobiologia 369–370:45–57

    Google Scholar 

  • Diaz MM, Pedrozo FL, Reynolds CS et al (2007) Chemical composition and the nitrogen- regulated trophic state of Patagonian lakes. Limnologica 37:17–27

    CAS  Google Scholar 

  • Diaz SB, Paladini AA, Braile HG et al (2013) Effect on Irradiance of the eruption of the Cordón Caulle (Chile) at different altitudes in the Nahuel Huapi National Park (Patagonia, Argentina). In: First International conference on remote sensing and geoinformation of the environment (RSCy2013). Proc. SPIE 8795, 879512. https://doi.org/10.1117/12.2027517

    Google Scholar 

  • Diéguez MC, Queimaliños CP, Ribeiro Guevara S et al (2013) Influence of dissolved organic matter character on mercury incorporation by planktonic organisms: An experimental study using oligotrophic water from Patagonian lakes. J Environ Sci 25:1980–1991

    Google Scholar 

  • Diéguez MC, Bencardino M, García PE et al (2019) A multi-year record of atmospheric mercury species at a background mountain station in Andean Patagonia (Argentina): Temporal trends and meteorological influence. Atmos Environ 214:116819

    Google Scholar 

  • Dranguet P, Le Faucheur S, Slaveykova VI (2017) Mercury bioavailability, transformations, and effects on freshwater biofilms. Environ Toxicol Chem 36:3194–3205

    CAS  Google Scholar 

  • Driscoll CT, Han YJ, Chen CY et al (2007) Mercury contamination in forest and freshwater ecosystems in the northeastern United States. Bioscience 57:17–28

    Google Scholar 

  • Driscoll CT, Mason RP, Chan HM et al (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983

    CAS  Google Scholar 

  • Du Preez DJ, Bencherif H, Bègue N et al (2020) Investigating the large‐scale transport of a Volcanic Plume and the impact on a secondary site. Atmos 11:548

    CAS  Google Scholar 

  • Eagles-Smith CA, Wiener JG, Eckley CS et al (2016) Mercury in western North America: a synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. Sci Total Environ 568:1213–1226

    CAS  Google Scholar 

  • Eagles-Smith CA, Silbergeld EK, Basu N et al (2018) Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio 47:170–197

    Google Scholar 

  • Evers D (2018) The effects of Methylmercury on wildlife: a comprehensive review and approach for interpretation. In: DellaSala DA, Goldstein MI (eds) The Encyclopedia of the Anthropocene. Elsevier, Oxford, pp 181–194

    Google Scholar 

  • Fernándes A, Falandysz J, Širič I (2020) The toxic reach of mercury and its compounds in human and animal food webs. Chemosphere 261:127765

    Google Scholar 

  • Fernández-Gómez C, Drott A, Björn E et al (2013) Towards universal wavelength-specific photodegradation rate constants for methyl mercury in humic waters, exemplified by a Boreal lake-wetland gradient. Environ Sci Technol 47:6279–6287

    Google Scholar 

  • Ferreyra M, Clayton S, Ezcurra C (1998) La flora altoandina de los sectores este y oeste del Parque Nacional Nahuel Huapi, Argentina. Darwiniana 36:65–79

    Google Scholar 

  • Finley ML, Kidd KA, Curry RA et al (2016) A comparison of mercury biomagnification through lacustrine food webs supporting brook trout (Salvelinus fontinalis) and other salmonid fishes. Front Environ Sci 4:23

    Google Scholar 

  • Fleck JA, Marvin-Dipasquale M, Eagles-Smith CA et al (2016) Mercury and methylmercury in aquatic sediment across western North America. Sci Total Environ 568:727–738

    CAS  Google Scholar 

  • Gallorini A, Loizeau JL (2021) Mercury methylation in oxic aquatic macro-environments: a review. J Limnol 80. https://doi.org/10.4081/jlimnol.2021.2007

  • Garcia PE, Diéguez MC, Queimaliños CP (2015a) Landscape integration of North Patagonian mountain lakes: a first approach using the characterization of dissolved organic matter. Lakes Reservoirs Res Manag 20:19–32

    CAS  Google Scholar 

  • Garcia RD, Reissig M, Queimaliños CP et al (2015b) Climate‐driven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter. Sci Total Environ 521:280–292

    Google Scholar 

  • Garreaud R, Lopez P, Minvielle M et al (2013) Large-scale control on the Patagonian climate. J Climate 26:215–230

    Google Scholar 

  • Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20:309–371

    CAS  Google Scholar 

  • Gèntes S, Löhrer B, Legeay AF et al (2021) Drivers of variability in mercury and methylmercury bioaccumulation and biomagnification in temperate freshwater lakes. Chemosphere 267:128890

    Google Scholar 

  • Gerea M, Pérez G, Unrein F et al (2017) CDOM and the underwater light climate in two shallow North Patagonian lakes: evaluating the effects on nano and microphytoplankton community structure. Aquat Sci. https://doi.org/10.1007/s00027‐016‐0493‐0

  • Gerea M, Queimaliños C, Unrein F (2019) Grazing impact and prey selectivity of picoplanktonic cells by mixotrophic flagellates in oligotrophic lakes. Hydrobiologia. https://doi.org/10.1007/s10750-018-3610-3

  • Gionfriddo CM, Tate MT, Wick RR et al (2016) Microbial mercury methylation in Antarctic sea ice. Nat Microbiol 1:16127. https://doi.org/10.1038/nmicrobiol.2016.127

    Article  CAS  Google Scholar 

  • Graydon JA, Louis VLS, Hintelmann H et al (2008) Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environ Sci Technol 42:8345–8351

    CAS  Google Scholar 

  • Grégoire DS, Poulain AJ (2014) A little bit of light goes a long way: the role of phototrophs on mercury cycling. Metallomics 6:396–407

    Google Scholar 

  • Grégoire DS, Poulain AJ (2018) Shining light on recent advances in microbial mercury cycling. Facets 3:858–879

    Google Scholar 

  • Grigal DF (2002) Inputs and outputs of mercury from terrestrial watersheds: a review. Environ Rev 10:1–39

    CAS  Google Scholar 

  • Gustin MS, Bank MS, Bishop K et al (2020) Mercury biogeochemical cycling: a synthesis of recent scientific advances. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139619

  • Hanna DEL, Buck DG, Chapman LJ (2016) Effects of habitat on mercury concentrations in fish: a case study of Nile perch (Lates niloticus). Ecotoxicology 25:178–191

    CAS  Google Scholar 

  • Hansen PJ, Anderson R, Stoecker DK et al (2019) Mixotrophy among freshwater and marine Protists. Reference Module in Life Sciences. https://doi.org/10.1016/b978-0-12-809633-8.20685-7

  • Hermanns YM, Biester H (2011) A Holocene record of mercury accumulation in a pristine lake in Southernmost South America (53°S)–climatic and environmental drivers. Biogeosci Discuss 8:6555–6588

    Google Scholar 

  • Hermanns YM, Biester H (2013a) Anthropogenic mercury signals in lake sediments from southernmost Patagonia, Chile. Sci Total Environ 445–446:126–135

    Google Scholar 

  • Hermanns YM, Biester H (2013b) A 17,300-year record of mercury accumulation in a pristine lake in southern Chile. J Paleo 49:547–561

    Google Scholar 

  • Hermanns YM, Martinez Cortizas A, Arz H et al (2013) Untangling the influence of in-lake productivity and terrestrial organic matter flux on 4,250 years of mercury accumulation in Lake Hambre, Southern Chile. J Paleo 49:563–573

    Google Scholar 

  • Higueras P, Oyarzun R, Kotnik J et al (2014) A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts. Environ Geochem Health. https://doi.org/10.1007/s10653-013-9591-2

  • Holz A, Paritsis J, Mundo IA et al (2017) Southern Annular Mode drives multicentury wildfire activity in southern South America. PNAS 114:9552–9557

    CAS  Google Scholar 

  • Horvat M, Kotnik J (2007) Survey of gaseous elemental Hg in Patagonian transects. Internal Report Jožef Stefan Institute, Department of Environmental Sciences

    Google Scholar 

  • Hsu-Kim H, Eckley CS, Achá D et al (2018) Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio 47:141–169

    Google Scholar 

  • Izaguirre I, Unrein F, Modenutti B et al (2014) Photosynthetic picoplankton in Argentina lakes. Adv Limnol 65:343–357

    Google Scholar 

  • Juárez A, Arribére MA, Arcagni M et al (2016) Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range. Environ Sci Pollut Res 23:17995–18009

    Google Scholar 

  • Juncos R, Milano D, Macchi PJ et al (2015) Niche segregation facilitates coexistence between native and introduced fishes in a deep Patagonian lake. Hydrobiologia 747:53–67

    CAS  Google Scholar 

  • Kainz M, Lucotte M (2006) Mercury concentrations in lake sediments - Revisiting the predictive power of catchment morphometry and organic matter composition. Water Air Soil Pollut 170:173–189

    CAS  Google Scholar 

  • Karimi R, Chen CY, Folt CL (2016) Comparing nearshore benthic and pelagic prey as mercury sources to lake fish: the importance of prey quality and mercury content lake fish: the importance of prey quality and mercury content. Sci Total Environ 565:211–221

    CAS  Google Scholar 

  • Kidd KA, Bootsma HA, Hesslein RH et al (2003) Mercury concentrations in the food web of Lake Malawi, East Africa. J Great Lakes Res 29:258–266

    CAS  Google Scholar 

  • Kocman D, Kanduč T, Ogrinc N et al (2011) Distribution and partitioning of mercury in a river catchment impacted by former mercury mining activity. Biogeochemistry 104:183–201

    CAS  Google Scholar 

  • Kocman D, Horvat M, Pirrone N et al (2013) Contribution of contaminated sites to the global mercury budget. Environ Res 125:160–170

    CAS  Google Scholar 

  • Kumar A, Wu S, Huang Y et al (2017) Mercury from wildfires: Global emission inventories and sensitivity to 2000–2050 global change. Atmos Environ 173:6–15

    Google Scholar 

  • Lamborg C, Hammerschmidt C, Bowman K et al (2014) A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512:65–68

    CAS  Google Scholar 

  • Lavoie R, Amyot M, Lapierre J-F (2019) Global meta‐analysis on the relationship between mercury and dissolved organic carbon in freshwater environments. Eur J Vasc Endovasc Surg 124:1508–1523

    CAS  Google Scholar 

  • Lehnherr I, St Louis V, Hintelmann H et al (2011) Methylation of inorganic mercury in polar marine waters. Nat Geosci 4:298–302

    CAS  Google Scholar 

  • Lehnherr I (2014) Methylmercury biogeochemistry: a review with special reference to Arctic aquatic ecosystems. Environ Rev 22:229–243

    CAS  Google Scholar 

  • Lyman SN, Cheng I, Gratz LE et al (2020) An updated review of atmospheric mercury. Sci Total Environ 707:135575

    CAS  Google Scholar 

  • Marengo JA, Jones R, Alvesa LM et al (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 29:2241–2255

    Google Scholar 

  • Marvin-DiPasquale M, Agee J, McGowan C et al (2000) Methyl- mercury degradation pathways: a comparison among three mercury-impacted ecosystems. Environ Sci Technol 34:4908–4916

    CAS  Google Scholar 

  • Masiokas MH, Villalba R, Luckman BH et al (2008) 20th-century glacier recession and regional hydroclimatic changes in North-Western Patagonia. Global Planet Change 60:85–100

    Google Scholar 

  • Masiokas M, Rivera A, Espizua LE et al (2009) Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr Palaeoclimatol Palaeoecol 281:242–268

    Google Scholar 

  • Mason RP, Reinfelder JR, Morel FMM (1995) Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut 80:915–921

    CAS  Google Scholar 

  • Mason RP, Reinfelder JR, Morel FMM (1996) Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ Sci Technol 30:1835–1845

    CAS  Google Scholar 

  • Mazzarino MJ, Bertiller T, Schlichter T et al (1998) Nutrient cycling in Patagonian ecosystems. Ecol Austral 8:167–181

    Google Scholar 

  • Mermoz M, Ubeda C, Grigera D et al (2009) El parque Nacional Nahuel Huapi. Sus características ecológicas y estado de conservación. In: Parque Nacional Nahuel Huapi. APN, San Carlos de Bariloche.

    Google Scholar 

  • Mladenov N, Sommaruga R, Morales-Baquero R et al (2011) Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat Commun 2:405

    CAS  Google Scholar 

  • Mladenov N, Williams MW, Schmidt SK et al (2012) Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains. Biogeosciences 9:3337–3355

    CAS  Google Scholar 

  • Modenutti BE, Balseiro EG, Queimaliños CP et al (1998) Structure and dynamics of food webs in Andean lakes. Lakes Reserv Res Manag 3:179–186

    Google Scholar 

  • Modenutti BE, Albariño RJ, Bastidas Navarro M et al (2010) Structure and dynamic of food webs in Andean North Patagonian freshwater systems: organic matter, light and nutrient relationships. Ecol Austral 20:95–114

    Google Scholar 

  • Modenutti B, Balseiro E, Navarro MB et al (2013) Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable. Aquat Sci 75:361–371

    CAS  Google Scholar 

  • Modenutti BE, Balseiro EG, Bastidas Navarro MA et al (2016) Effects of Volcanic Pumice Inputs on microbial community composition and dissolved C/P ratios in lake waters: an experimental approach. Microb Ecol 71:18–28

    CAS  Google Scholar 

  • Morris DP, Zagarese H, Williamson CE et al (1995) The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40:1381–1391

    CAS  Google Scholar 

  • Mundo I, Villalba R, Veblen TT et al (2017) Fire history in southern Patagonia: human and climate influences on fire activity in Nothofagus pumilio forests. Ecosphere 8:e01932

    Google Scholar 

  • Obrist D, Kirk JL, Zhang L et al (2018) A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use. Ambio 47:116–140

    Google Scholar 

  • Paranjape AR, Hall BD (2017) Recent advances in the study of mercury methylation in aquatic systems. Facets 2:85–119

    Google Scholar 

  • Pereyra FX, Bouza P (2019) Soils from the Patagonian region. In: Rubio G, Lavado RS, Pereyra FX (eds) The soils of Argentina, World Soils Book Series. Springer Nature, pp 101–121

    Google Scholar 

  • Pérez Catán S, Arribére MA, Cohen IM (2009) Uso del 197Hg como trazador de la reacción de metilación de mercurio. Análisis de la transformación biótica y abiótica de sedimentos en el lago Escondido. Rumbos Tecnológicos 1:9–22

    Google Scholar 

  • Pérez Catán S, Arribére MA, Sánchez RS (2003) Mercury in water. In: Investigation of mercury and other heavy metals in waterbodies of Nahuel Huapi National Park, Argentine Patagonian Andean Range. Baselines determination, trophic web pathways investigation, and contamination source identification. Final Report IAEA Technical Co-operation Project ARG/7/006

    Google Scholar 

  • Pérez Catán S, Juárez A, Bubach DF (2016) Characterization of freshwater changes in lakes of Nahuel Huapi National Park produced by the 2011 Puyehue–Cordón Caulle eruption. Environ Sci Pollut Res 23:20700–20710

    Google Scholar 

  • Pérez Catán S, Ribeiro Guevara S, Marvin DiPasqualle M et al (2004) Determination of methyl Hg production potentials in lake Escondido sediments, Patagonia, Argentina, by using 197Hg tracer. Mat Geoenvironm 51:910–914

    Google Scholar 

  • Pérez Catán S, Ribeiro GS, Marvin-DiPasquale M et al (2007) Methodological considerations regarding the use of inorganic 197Hg(II) radiotracer to assess mercury methylation potential rates in lake sediment. Appl Radiat Isot 65:987–994

    Google Scholar 

  • Pérez Catán S, Rodríguez Miranda M, Guimarães JRD (2011) Assessment of mercury and methylmercury in different compartments from Northwest Patagonia lakes, Argentina. In: SETAC-LA. Cumaná, Venezuela 2011

    Google Scholar 

  • Pérez GL, Queimaliños CP, Modenutti BE (2002) Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes. J Plankton Res 24:591–599

    Google Scholar 

  • Pirrone N, Cinnirella S, Feng X et al (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964

    CAS  Google Scholar 

  • Queimaliños CP, Modenutti BE, Balseiro GE (1999) Symbiotic association of the ciliate Ophrydium naumanni with Chlorella causing a deep chlorophyll a maximum in an oligotrophic South Andes lake. J Plankton Res 21:167–178

    Google Scholar 

  • Queimaliños C (2002) The role of phytoplanktonic size fractions in the microbial food webs in two north Patagonian lakes (Argentina). Arch Hydrobiol 28:1236–1240

    Google Scholar 

  • Queimaliños C, Reissig M, Diéguez MC et al (2012) Influence of precipitation, landscape and hydrogeomorphic lake features on pelagic allochthonous indicators in two connected ultraoligotrophic lakes of North Patagonia. Sci Total Environ 427–428:219–228

    Google Scholar 

  • Queimaliños C, Reissig M, Pérez GL et al (2019) Linking landscape heterogeneity with lake dissolved organic matter properties assessed through absorbance and fluorescence spectroscopy: spatial and seasonal patterns in temperate lakes of Southern Andes (Patagonia, Argentina). Sci Total Environ 686:223–235

    Google Scholar 

  • Ravichandran M (2004) Interactions between mercury and dissolved organic matter - a review. Chemosphere 55:319–331

    CAS  Google Scholar 

  • Ribeiro Guevara S, Arribere M, Calvelo S et al (1995) Elemental composition of lichens at Nahuel Huapi national park, Patagonia, Argentina. J Radioanal Nucl Chem 198:437–448

    Google Scholar 

  • Ribeiro Guevara S, Massaferro J, Villarosa G et al (2002) Heavy metal contamination in sediments of Lake Nahuel Huapi, Nahuel Huapi National Park, Northern Patagonia, Argentina. Water Air Soil Pollut 137:21–44

    CAS  Google Scholar 

  • Ribeiro Guevara S, Rizzo AP, Arribére MA et al (2003) Sediments. In: Investigation of mercury and other heavy metals in water bodies of Nahuel Huapi National Park, Argentine Patagonic Andean Range. Baselines determination, trophic web pathways investigation, and contamination source identification. Final Report IAEA Technical Co-operation Project ARG/7/006

    Google Scholar 

  • Ribeiro Guevara S, Bubach D, Arribére M (2004) Mercury in lichens of Nahuel Huapi national park, Patagonia, Argentina. J Radioanal Nucl Chem 261:679–687

    CAS  Google Scholar 

  • Ribeiro Guevara S, Rizzo A, Sánchez R et al (2005) Heavy metal inputs in Northern Patagonia lakes from short sediment cores analysis. J Radioanal Nucl Chem 265:481–493

    Google Scholar 

  • Ribeiro Guevara S, Pérez Catán S, Marvin-DiPasquale M (2009) Benthic methylmercury production in lacustrine ecosystems of Nahuel Huapi National Park, Patagonia, Argentina. Chemosphere 77:471–477

    CAS  Google Scholar 

  • Ribeiro Guevara S, Meili M, Rizzo A et al (2010) Sediment records of highly variable mercury inputs to mountain lakes in Patagonia during the past millennium. Atmos Chem Phys 10:3443–3453

    Google Scholar 

  • Rizzo A, Arcagni M, Arribére MA et al (2011) Mercury in the biotic compartments of Northwest Patagonia lakes, Argentina. Chemosphere 84:70–79

    CAS  Google Scholar 

  • Rizzo A, Arcagni M, Campbell LM et al (2014) Source and trophic transfer of mercury in plankton from an ultraoligotrophic lacustrine system (Lake Nahuel Huapi, North Patagonia). Ecotoxicology 23:1184–1194

    CAS  Google Scholar 

  • Rizzo A, Daga R, Fajon V et al (submitted) Mercury in an ultraoligotrophic lacustrine system with volcanic sources: the relationship between soils and waters in a forested catchment

    Google Scholar 

  • Rudolph EH (2002) Sobre la biología del camarón de río Samastacus spinifrons (Philippi 1882) (Decapoda, Parastacidae). Gayana 66:147–159

    Google Scholar 

  • Schaefer JK, Jane Y, Reinfelder JR et al (2004) Role of the bacterial organomercury lyase (MerB) in controlling methylmercury accumulation in mercury-contaminated natural waters. Environ Sci Technol 38:4304–4311

    CAS  Google Scholar 

  • Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Env Resour 34:43–63

    Google Scholar 

  • Shanley JB, Mast MA, Campbell DH et al (2008) Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach. Environ Pollut 154:143–154

    CAS  Google Scholar 

  • Singer BS, Jicha BR, Naranjo JA et al (2008) Eruptive history, geochronology, and magmatic evolution of the Puyehue–Cordón Caulle volcanic complex, Chile. Geol Soc Am Bull 120:599–618

    CAS  Google Scholar 

  • Soto Cárdenas C, Diéguez MC, Ribeiro Guevara S et al (2014) Incorporation of inorganic mercury (Hg2+) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: the role of different plankton size fractions and species assemblages. Sci Total Environ 494:65–73

    Google Scholar 

  • Soto Cárdenas C, Gerea M, García PE et al (2017) Interplay between climate and hydrogeomorphic features and their effect on the seasonal variation of dissolved organic matter in shallow temperate lakes of the Southern Andes (Patagonia, Argentina): a field study based on optical properties. Ecohydrology 10:e1872

    Google Scholar 

  • Soto Cárdenas C, Diéguez MC, Queimaliños CP et al (2018a) Mercury in a stream-lake network (Southern Volcanic Zone, Argentina): partitioning and interaction with dissolved organic matter. Chemosphere 197:262–270

    Google Scholar 

  • Soto Cárdenas C, Gerea M, Queimaliños C et al (2018b) Inorganic mercury (Hg2+) accumulation in autotrophic and mixotrophic planktonic protists: implications for Hg trophodynamics in ultraoligotrophic Andean Patagonian lakes. Chemosphere 199:223–231

    Google Scholar 

  • Soto Cárdenas C, Queimaliños CP, Ribeiro Guevara S et al (2019) The microbial mercury link in oligotrophic lakes: bioaccumulation by picocyanobacteria in natural gradients of dissolved organic matter. Chemosphere 230:360–368

    Google Scholar 

  • Sprovieri F, Pirrone N, Ebinghaus R et al (2010) A review of worldwide atmospheric mercury measurements. Atmos Chem Phys 10:8245–8265

    CAS  Google Scholar 

  • Sprovieri F, Pirrone N, Bencardino M et al (2016) Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmos Chem Phys 16:11915–11935

    CAS  Google Scholar 

  • Stern CR (2008) Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes. Bull Volcanol 70:435–454

    Google Scholar 

  • Streets DG, Horowitz HM, Jacob DJ et al (2017) Total mercury released to the environment by human activities. Environ Sci Technol 51:5969–5977

    CAS  Google Scholar 

  • Streets DG, Horowitz HM, Lu Z et al (2019) Global and regional trends in mercury emissions and concentrations, 2010–2015. Atmos Environ 201:417–427

    CAS  Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241–293

    CAS  Google Scholar 

  • UNEP (2018) Global mercury assessment 2018: key findings. https://web.unep.org/globalmercurypartnership/globalmercury-assessment-2018-key-findings. Accessed 30 Sept 2021

  • Veblen TT, Kitzberger T (2002) Inter-hemispheric comparison of fire history: The Colorado front range, USA, and the Northern Patagonian Andes, Argentina. Plant Ecol 163:187–207

    Google Scholar 

  • Wang X, Luo J, Yuan W et al (2020) Global warming accelerates uptake of atmospheric mercury in regions experiencing glacier retreat. PNAS 117:2049–2055

    CAS  Google Scholar 

  • Whitney MC, Cristol DA (2018) Impacts of sublethal mercury exposure on birds: a detailed review. In: de Voogt P (ed) Reviews of environmental contamination and toxicology, reviews of environmental contamination and toxicology. Springer International Publishing, Cham, pp 113–163

    Google Scholar 

  • Wilson R, Glasser NF, Reynolds JM (2018) Glacial lakes of the Central and Patagonian Andes. Global Planet Change 162:275–291

    Google Scholar 

  • World Health Organization (WHO) (2017) Mercury and health. https://www.who.int/news-room/fact-sheets/detail/mercury-and-health. Accesed 25 Oct 2021

  • Yang L, Zhang W, Ren M et al (2020) Mercury distribution in a typical shallow lake in northern China and its reemission from sediment. Ecotoxicol Environ Saf 192:110316

    CAS  Google Scholar 

  • Zagarese HE, Ferraro M, Queimaliños C, Diéguez MC et al (2017) Patterns of dissolved organic matter across the Patagonian landscape: a broad scale survey of Chilean and Argentine lakes. Mar Freshw Res 68:1–11

    Google Scholar 

  • Zhang H, Yin R-S, Feng X-B, Sommar J et al (2013) Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures. Sci Rep 3:3322

    Google Scholar 

  • Zhu S, Zhang Z, Žagar D (2018) Mercury transport and fate models in aquatic systems: A review and synthesis. Sci Total Environ 15:538–549

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diéguez, M.d.C. et al. (2022). Mercury in Aquatic Systems of North Patagonia (Argentina): Sources, Processes, and Trophic Transfer. In: Mataloni, G., Quintana, R.D. (eds) Freshwaters and Wetlands of Patagonia. Natural and Social Sciences of Patagonia. Springer, Cham. https://doi.org/10.1007/978-3-031-10027-7_8

Download citation

Publish with us

Policies and ethics