Skip to main content

Saffron

  • Chapter
  • First Online:
Essentials of Medicinal and Aromatic Crops

Abstract

Saffron, the king of condiments, is the dried crimson stigma of Crocus sativus L. It is an autumn-flowering herbaceous plant that belongs to the family Iridaceae. C. sativus is traditionally used as medicine in Chinese, Ayurvedic, Persian, and Unani medicinal systems. Mainly, it is grown in Afghanistan, Morocco, Iran, India, Spain and Italy. It is estimated that approximately 418 t year−1 saffron is produced on 121,338 ha, worldwide. The plant is triploid and is mostly cultivated through corms. Soil quality, temperature, photoperiod, and topographical areas are the key environmental factors influencing the production of saffron. Its popularity is increasing due to its intriguing uses in food, medicine, and cosmetics. Among spices it is the most expensive, because of the presence of three bioactive constituents namely crocin, safranal and picrocrocincin. This chapter includes the study of qualitative, economic, agronomic, ethnobotanical, and medicinal aspects of saffron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tahiri, A., Mazri, M. A., Karra, Y., Ait Aabd, N., Bouharroud, R., & Mimouni, A. (2023). Propagation of saffron (Crocus sativus L.) through tissue culture: A review. The Journal of Horticultural Science and Biotechnology, 98(1), 10–30.

    Article  CAS  Google Scholar 

  2. Ramadan, A., Soliman, G., Mahmoud, S. S., Nofal, S. M., & Abdel-Rahman, R. F. (2012). Evaluation of the safety and antioxidant activities of Crocus sativus and Propolis ethanolic extracts. Journal of Saudi Chemical Society, 16(1), 13–21.

    Article  CAS  Google Scholar 

  3. Emam, V., Eghbal, M. K., Lar, M. M. S., Khalaj, K. N., Peknejad, F., & Rohami, B. (2012). The effect of planting density and different nitrogen and phosphorus application rates on saffron yield. Journal of Basic and Applied Scientific Research, 2(3), 2400–2404.

    Google Scholar 

  4. Khilare, V., Tiknaik, A., Prakash, B., Ughade, B., Korhale, G., Nalage, D., & Khedkar, G. (2019). Multiple tests on saffron find new adulterant materials and reveal that Ist grade saffron is rare in the market. Food Chemistry, 272, 635–642.

    Article  CAS  PubMed  Google Scholar 

  5. Mohtashami, L., Amiri, M. S., Ramezani, M., Emami, S. A., & Simal-Gandara, J. (2021). The genus crocus l.: A review of ethnobotanical uses, phytochemistry and pharmacology. Indian Crops Production, 171, 113923.

    Article  CAS  Google Scholar 

  6. Mykhailenko, O., Desenko, V., Ivanauskas, L., & Georgiyants, V. (2020). Standard operating procedure of Ukrainian saffron cultivation according to good agriculture and collection practices to assure quality and traceability. India Crops Production, 151, 112376.

    Article  CAS  Google Scholar 

  7. Hajyzadeh, M., Olmez, F., & Khawar, K. M. (2020). Molecular approaches to determine phylogeny in saffron. In Saffron (pp. 57–68). Elsevier.

    Chapter  Google Scholar 

  8. Serrano-Díaz, J., Sánchez, A. M., Martínez-Tomé, M., Winterhalter, P., & Alonso, G. L. (2013). A contribution to nutritional studies on Crocus sativus flowers and their value as food. Journal of Food Composition and Analysis, 31(1), 101–108.

    Article  Google Scholar 

  9. Bakshi, R. A., Sodhi, N. S., Wani, I. A., Khan, Z. S., Dhillon, B., & Gani, A. (2022). Bioactive constituents of saffron plant: Extraction, encapsulation and their food and pharmaceutical applications. Applied Food Research, 100076, 100076.

    Article  Google Scholar 

  10. Tsimidou, M. Z. (2023). On the importance of the starting material choice and analytical procedures adopted when developing a strategy for the Nanoencapsulation of saffron (Crocus sativus L.). Bioactive Antioxidants Antioxidants, 12(2), 496.

    CAS  PubMed  Google Scholar 

  11. Menia, M., Iqbal, S., Zahida, R., Tahir, S., Kanth, R. H., Saad, A. A., & Hussian, A. (2018). Production technology of saffron for enhancing productivity. Journal of Pharmacognosy and Phytochemistry, 7(1), 1033–1039.

    Google Scholar 

  12. Kothari, D., Thakur, R., & Kumar, R. (2021). Saffron (Crocus sativus L.): Gold of the spices—a comprehensive review. Horticulture, Environment, and Biotechnology, 62(5), 661–677.

    Article  Google Scholar 

  13. Muzaffar, S., Rather, S. A., Khan, K. Z., & Akhter, R. (2016). Nutritional composition and in-vitro antioxidant properties of two cultivars of Indian saffron. Journal of Food Measurement and Characterization, 10, 185–192.

    Article  Google Scholar 

  14. El-Midaoui, A., Ghzaiel, I., Vervandier-Fasseur, D., Ksila, M., Zarrouk, A., Nury, T., & Lizard, G. (2022). Saffron (Crocus sativus L.): A source of nutrients for health and for the treatment of neuropsychiatric and age-related diseases. Nutrients, 14(3), 597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeka, K., Ruparelia, K. C., Continenza, M. A., Stagos, D., Vegliò, F., & Arroo, R. (2015). Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol. Fitoterapia, 107, 128–134.

    Article  CAS  PubMed  Google Scholar 

  16. Mousavi, S. Z., & Bathaie, S. Z. (2011). Historical uses of saffron identifying potential new avenues for modern research. Avicenna Journal Phytomed, 1, 57–66.

    Google Scholar 

  17. Moghaddasi, M. S. (2010). Saffron chemicals and medicine usage. Journal of Medicinal Plants Research, 4(6), 427–430.

    CAS  Google Scholar 

  18. Yildirim, M. U., Asil, H., Hajyzadeh, M., Sarihan, E. O., & Khawar, K. M. (2017). Effect of changes in planting depths of saffron (Crocus sativus L.) corms and determining their agronomic characteristics under warm and temperate (Csa) climatic conditions of Turkish province of Hatay. Acta Horticulturae, 1184, 47–53.

    Article  Google Scholar 

  19. Rahimi, H., Shokrpour, M., Tabrizi-Raeini, L., & Esfandiari, E. (2017). A study on the efects of environmental factors on vegetative characteristics and corm yield of saffron (Crocus sativus). Iran Journal of Horticulture Science, 48, 45–52.

    Google Scholar 

  20. Koocheki, A., Nassiri, M., & Behdani, M. A. (2006). Agronomic attributes of saffron yield at agroecosystems. Acta Hortulturae, 739, 24–33.

    Google Scholar 

  21. Zahmati, R., Shekari, H. A., & Fotokian, M. H. (2018). Growth and development of saffron (Crocus sativus L.) in response to temperature pre-treatment and environmental conditions. Journal of Bioscience and Biotechnology, 7, 47–50.

    Google Scholar 

  22. Nehvi, F. A. (2010). Forthcoming challenges for improving safron farming systems in Kashmir. Acta Horticulturae, 850, 281–286.

    Article  Google Scholar 

  23. Bayat, M., Rahimi, M., & Ramezani, M. (2016). Determining the most effective traits to improve saffron (Crocus sativus L.) yield. Physiological Molecular Biology Plants, 22, 153–161.

    Article  Google Scholar 

  24. Koocheki, A., Rezvani, M. P., & Fallahi, H. R. (2016). Effects of planting dates, irrigation management and cover crops on growth and yield of saffron (Crocus sativus L.). Agroecology, 8, 435–451.

    Google Scholar 

  25. Mohammad, M., Amiri, M. E., & Sharghi, Y. (2012). Respond of saffron (Crocus sativus L.) to animal manure application. Journal of Medicinal Plants Research, 6(7), 1323–1326.

    Article  Google Scholar 

  26. Eyhorn, F., Muller, A., Reganold, J. P., Frison, E., Herren, H. R., Luttikholt, L., Mueller, A., Sanders, J., Scialabba, N. E.-H., Seufert, V., & Smith, P. (2019). Sustainability in global agriculture driven by organic farming. Natural Sustainability, 2, 253–255.

    Article  Google Scholar 

  27. Kafi, M., Koocheki, A., & Rashed, M. H. (2006). Saffron (Crocus sativus): Production and processing. Science Publishers.

    Book  Google Scholar 

  28. Gresta, F., Lombardo, G. M., Siracusa, L., & Ruberto, G. (2008). Effect of mother corm dimension and sowing time on stigma yield, daughter corms and qualitative aspects of saffron (Crocus sativus L.) in a mediterranean environment. Journal of the Science of Food and Agriculture, 88(7), 1144–1150.

    Article  CAS  Google Scholar 

  29. Yarami, N., Kamgar-Haghighi, A. A., Sepaskhah, A. R., & Zand-Parsa, S. (2011). Determination of the potential evapotranspiration and crop coefficient for saffron using a water-balance lysimeter. Archives of Agronomy and Soil Science, 57(7), 727–740.

    Article  Google Scholar 

  30. Cardone, L., Castronuovo, D., Perniola, M., Cicco, N., & Candido, V. (2020). Saffron (Crocus sativus L.), the king of spices: An overview. Scientia Horticulturae, 272, 109560.

    Article  CAS  Google Scholar 

  31. Devi, K., Sharma, M., & Ahuja, P. S. (2014). Direct somatic embryogenesis with high frequency plantlet regeneration and successive cormlet production in saffron (Crocus sativus L.). South African Journal of Botany, 93, 207–216.

    Article  Google Scholar 

  32. Ahmad, M., & Sagar, V. (2007). Integrated management of corm/tuber rot of saffron and Kalazeera. In Horticulture Mini Mission-1, Indian Council for Agricultural Research (ICAR) (p. 22).

    Google Scholar 

  33. Husaini, A. M., Hassan, B., Ghani, M. Y., Teixeira da Silva, J. A., & Kirmani, N. A. (2010). Saffron (Crocus sativus Kashmirianus) cultivation in Kashmir: Practices and problems. Functional Plant Science and Biotechnology, 4(2), 108–115.

    Google Scholar 

  34. Ghani, M. Y. (2002). Corm rot disease of saffron and its management. In Proceedings of seminar-cum-workshop on saffron (Crocus sativus) (pp. 107–112). SKUAST-K.

    Google Scholar 

  35. Dar, M. H., Groach, R., Razvi, S. M., & Singh, N. (2017). Saffron crop (golden crop) in modern sustainable agricultural systems. International Journal for Research in Applied Science and Engineering Technology, 5, 247–259.

    Article  Google Scholar 

  36. Kafi, M., & Showket, T. (2007). A comparative study of saffron agronomy and production systems of Khorasan (Iran) and Kashmir (India). Acta Horticulturae, 739, 123–132.

    Article  Google Scholar 

  37. Dar, M. H., Groach, R., Razvi, S. M., & Singh, N. (2017). Saffron crop (golden crop) in a modern sustainable agricultural system. International Journal for Research in Applied Science and Engineering Technology, 5, 247–259.

    Article  Google Scholar 

  38. Mehdizadeh, R., Parizadeh, M. R., Khooei, A. R., Mehri, S., & Hosseinzadeh, H. (2013). Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in wistar rats. Iranian Journal of Basic Medical Sciences, 16(1), 56–63.

    PubMed  PubMed Central  Google Scholar 

  39. Zhang, A., Shen, Y., Cen, M., Hong, X., Shao, Q., Chen, Y., & Zheng, B. (2019). Polysaccharide and crocin contents, and antioxidant activity of safron from diferent origins. Indian Crops Production, 133, 111–117.

    Article  CAS  Google Scholar 

  40. Maggi, L., Carmona, M., Zalacain, A., Kanakis, C. D., Anastasaki, E., Tarantilis, P. A., Polissiou, M. G., & Alonso, G. L. (2010). Changes in saffron volatile profle according to its storage time. Food Research International Journal, 43, 1329–1334.

    Article  CAS  Google Scholar 

  41. Shahi, T., Assadpour, E., & Jafari, S. M. (2016). Main chemical compounds and pharmacological activities of stigmas and tepals of ‘red gold’; safron. Trends Food Science Technology, 58, 69–78.

    Article  CAS  Google Scholar 

  42. Liakopoulou-Kyriakides, M., & Kyriakidis, D. A. (2002). Croscus sativus-biological active constitutents. Studies in Natural Products Chemistry, 26, 293–312.

    Article  CAS  Google Scholar 

  43. Abe, K., & Saito, H. (2000). Effects of saffron extract and its constituent crocin on learning behavior and long-term potentiation. Phytotherapy Research, 14(3), 149–152.

    Article  CAS  PubMed  Google Scholar 

  44. Wallis, T. E. (2005). Textbook of pharmacognosy. CBS.

    Google Scholar 

  45. Samarghandian, S., Borji, A., Farahmand, S. K., Afshari, R., & Davoodi, S. (2013). Crocus sativus L. (safron) stigma aqueous extract induces apoptosis in alveolar human lung cancer cells through caspase-dependent pathways activation (pp. 1–12). Biomed Research International.

    Google Scholar 

  46. Mykhailenko, O., Ivanauskas, L., Bezruk, I., Sidorenko, L., Lesyk, R., & Georgiyants, V. (2021). Characterization of phytochemical components of Crocus sativus leaves: A new attractive by-product. Scientia Pharmaceutica, 89(2), 28.

    Article  CAS  Google Scholar 

  47. Wang, Y., Sun, J., Liu, C., & Fang, C. (2014). Protective efects of crocetin pretreatment on myocardial injury in an ischemia/reperfusion rat model. European Jornal of Pharmacology, 741, 290–296.

    Article  CAS  Google Scholar 

  48. Ohba, T., Ishisaka, M., Tsujii, S., Tsuruma, K., Shimazawa, M., Kubo, K., Umigai, N., Iwawaki, T., & Hara, H. (2016). Crocetin protects ultraviolet A-induced oxidative stress and cell death in skin in vitro and in vivo. European Journal Pharmacology, 789, 244–253.

    Article  CAS  Google Scholar 

  49. Kabiri, M., Rezadoost, H., & Ghassempour, A. (2017). A comparative quality study of saffron constituents through HPLC and HPTLC methods followed by isolation of crocins and picrocrocin. LWT-Food Science and Technology, 84, 1–9.

    Article  CAS  Google Scholar 

  50. Assimopoulou, A. N., Sinakos, Z., & Papageorgiou, V. P. (2005). Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytotherapy Research, 19, 997–1000.

    Article  CAS  PubMed  Google Scholar 

  51. Samarghandian, S., & Borji, A. (2014). Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharmacognosy Research, 6, 99–107.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jan, S., Wani, A. A., Kamili, A. N., & Kashtwari, M. (2014). Distribution, chemical composition and medicinal importance of saffron (Crocus sativus L.). African Journal of Plant Science, 8(12), 537–545.

    Google Scholar 

  53. Abdullaev, F. (2003). Crocus sativus against cancer. Archives of Medical Research, 4(34), 354.

    Article  Google Scholar 

  54. Abdullaev, F. I., & Espinosa-Aguirre, J. J. (2004). Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detection and Prevention, 28(6), 426–432.

    Article  CAS  PubMed  Google Scholar 

  55. Lechtenberg, M., Schepmann, D., Niehues, M., Hellenbrand, N., Wünsch, B., & Hensel, A. (2008). Quality and functionality of saffron: Quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and σ1 (sigma-1) receptors. Planta Medica, 74(07), 764–772.

    Article  CAS  PubMed  Google Scholar 

  56. Magesh, V., Singh, J. P. V., Selvendiran, K., Ekambaram, G., & Sakthisekaran, D. (2006). Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. Molecular and cellular biochemistry, 287, 127–135.

    Article  CAS  PubMed  Google Scholar 

  57. Rangarajan, P., Subramaniam, D., Paul, S., Kwatra, D., Palaniyandi, K., Islam, S., & Dhar, A. (2015). Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells. Oncotarget, 6(29), 27661–27673.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bhandari, P. R. (2015). Crocus sativus L.(saffron) for cancer chemoprevention: A mini review. Journal of traditional and complementary medicine, 5(2), 81–87.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Aung, H. H., Wang, C. Z., Ni, M., Fishbein, A., Mehendale, S. R., Xie, J. T., & Yuan, C. S. (2007). Crocin from Crocus sativus possesses significant anti-proliferation effects on human colorectal cancer cells. Experimental Oncology, 29(3), 175–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zeinali, M., Zirak, M. R., Rezaee, S. A., Karimi, G., & Hosseinzadeh, H. (2019). Immunoregulatory and anti-inflammatory properties of Crocus sativus (saffron) and its main active constituents: A review. Iranian Journal of Basic Medical Sciences, 22(4), 334–344.

    PubMed  PubMed Central  Google Scholar 

  61. Xing, B., Li, S., Yang, J., Lin, D., Feng, Y., Lu, J., & Shao, Q. (2021). Phytochemistry, pharmacology, and potential clinical applications of saffron: A review. Journal of Ethnopharmacology, 281, 114555.

    Article  CAS  PubMed  Google Scholar 

  62. Joukar, S., Ghasemipour-Afshar, E., Sheibani, M., Naghsh, N., & Bashiri, A. (2013). Protective effects of saffron (Crocus sativus) against lethal ventricular arrhythmias induced by heart reperfusion in the rat: A potential anti-arrhythmic agent. Pharmaceutical biology, 51(7), 836–843.

    Article  PubMed  Google Scholar 

  63. Kianbakht, S., & Hajiaghaee, R. (2011). Anti-hyperglycemic effects of saffron and its active constituents, crocin and safranal, in alloxan-induced diabetic rats. Journal of Medicinal Plants, 10(39), 82–89.

    CAS  Google Scholar 

  64. Abu-Izneid, T., Rauf, A., Khalil, A. A., Olatunde, A., Khalid, A., Alhumaydhi, F. A., & Rengasamy, K. R. (2022). Nutritional and health beneficial properties of saffron (Crocus sativus L): A comprehensive review. Critical Reviews in Food Science and Nutrition, 62(10), 2683–2706.

    Article  CAS  PubMed  Google Scholar 

  65. Sepahi, S., Mohajeri, S. A., Hosseini, S. M., Khodaverdi, E., Shoeibi, N., Namdari, M., & Tabassi, S. A. S. (2018). Effects of crocin on diabetic maculopathy: A placebo-controlled randomized clinical trial. American Journal of Ophthalmology, 190, 89–98.

    Article  CAS  PubMed  Google Scholar 

  66. Sanaie, S., Nikanfar, S., Kalekhane, Z. Y., Azizi-Zeinalhajlou, A., Sadigh-Eteghad, S., Araj-Khodaei, M., & Andalib, S. (2023). Saffron as a promising therapy for diabetes and Alzheimer’s disease: Mechanistic insights. Metabolic Brain Disease, 38(1), 137–162.

    Article  CAS  PubMed  Google Scholar 

  67. Zheng, S., Qian, Z., Tang, F., & Sheng, L. (2005). Suppression of vascular cell adhesion molecule-1 expression by crocetin contributes to attenuation of atherosclerosis in hypercholesterolemic rabbits. Biochemical pharmacology, 70(8), 1192–1199.

    Article  CAS  PubMed  Google Scholar 

  68. Zheng, S., Qian, Z., Sheng, L., & Wen, N. (2006). Crocetin attenuates atherosclerosis in hyperlipidemic rabbits through inhibition of LDL oxidation. Journal of Cardiovascular Pharmacology, 47(1), 70–76.

    Article  CAS  PubMed  Google Scholar 

  69. Christodoulou, E., Kadoglou, N. P. E., Stasinopoulou, M., Konstandi, O. A., Kenoutis, C., Kakazanis, Z. I., & Valsami, G. (2018). Crocus sativus L. aqueous extract reduces atherogenesis, increases atherosclerotic plaque stability, and improves glucose control in diabetic atherosclerotic animals. Atherosclerosis, 268, 207–214.

    Article  CAS  PubMed  Google Scholar 

  70. Saleem, S., Ahmad, M., Ahmad, A. S., Yousuf, S., Ansari, M. A., Khan, M. B., Ishrat, T., & F., & Islam. (2006). Effect of saffron (Crocus sativus) on neurobehavioral and neurochemical changes in cerebral ischemia in rats. Journal of Medicinal Food, 9(2), 246–253.

    Article  PubMed  Google Scholar 

  71. Zheng, Y. Q., Liu, J. X., Wang, J. N., & Xu, L. (2007). Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Research, 1138, 86–94.

    Article  CAS  PubMed  Google Scholar 

  72. Khalili, M., & Hamzeh, F. (2010). Effects of active constituents of Crocus sativus L., crocin on streptozocin-induced model of sporadic Alzheimer’s disease in male rats. Iranian Biomedical Journal, 14(1–2), 59–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, G. F., Zhang, Y., & Zhao, G. (2015). Crocin protects PC12 cells against MPP(+)-induced injury through inhibition of mitochondrial dysfunction and ER stress. Neurochemistry International, 89, 101–110.

    Article  CAS  PubMed  Google Scholar 

  74. Deslauriers, A., Afkhami-Goli, A. M., Paul, R. K., Bhat, S., Acharjee, K. K., Ellested, F., Noorbaksh, M., & Michalak-Power, C. (2011). Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. The Journal of Immunology, 187(9), 4788–4799.

    Article  CAS  PubMed  Google Scholar 

  75. Purushothuman, S., Nandasena, C., Peoples, C. L., El Massri, N., Johnstone, D. M., Mitrofanis, J., & Stone, J. (2013). Saffron pre-treatment offers neuroprotection to Nigral and retinal dopaminergic cells of MPTP-treated mice. Journal of Parkinson’s Disease, 3(1), 77–83.

    Article  CAS  PubMed  Google Scholar 

  76. Jalali-Heravi, M., Parastar, H., & Ebrahimi-Najafabadi, H. (2009). Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography-mass spectrometry analysis. Journal of Chromatography, 1216(33), 6088–6097.

    Article  CAS  PubMed  Google Scholar 

  77. Khazdair, M. R., Boskabady, M. H., Hosseini, M., Rezaee, R., & Tsatsakis, A. M. (2015). The effects of Crocus sativus (saffron) and its constituents on nervous system: A review. Avicenna Journal of Phytomedicine, 5(5), 376–391.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kell, G., Rao, A., Beccaria, G., Clayton, P., Inarejos-García, A. M., & Prodanov, M. (2017). Saffron a novel saffron extract (Crocus sativus L.) improves mood in healthy adults over 4 weeks in a double-blind, parallel, randomized, placebo-controlled clinical trial. Complementary Therapies in Medicine, 33, 58–64.

    Article  PubMed  Google Scholar 

  79. Hosseinzadeh, H., Sadeghnia, H. R., Ghaeni, F. A., Motamedshariaty, V. S., & Mohajeri, S. A. (2012). Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytotherapy Research, 26, 381–386.

    Article  CAS  PubMed  Google Scholar 

  80. Mousavi, S. Z., & Bathaie, S. Z. (2011). Historical uses of saffron: Identifying potential new avenues for modern research. Avicenna Journal of Phytomedicine, 1(2), 57–66.

    Google Scholar 

  81. Mzabri, I., Addi, M., & Berrichi, A. (2019). Traditional and modern uses of saffron (Crocus sativus). Cosmetics, 6(4), 63.

    Article  CAS  Google Scholar 

  82. Modaghegh, M. H., Shahabian, M., Esmaeili, H. A., Rajbai, O., & Hosseinzadeh, H. (2008). Safety evaluation of saffron (Crocus sativus) tablets in healthy volunteers. Phytomedicine, 15(12), 1032–1037.

    Article  PubMed  Google Scholar 

  83. Ramadan, A., Soliman, G., Mahmoud, S. S., Nofal, S. M., & Abdel-Rahman, R. F. (2010). Evaluation of the safety and antioxidant activities of Crocus sativus and propolis ethanolic extracts. Journal of Saudi Chemistry Society, 16, 13–21.

    Article  Google Scholar 

  84. Li, C. Y., & Wu, T. S. (2002). Constituents of the pollen of Crocus sativus L. and their tyrosinase inhibitory activity. Chemical and pharmaceutical bulletin, 50(10), 1305–1309.

    Article  CAS  PubMed  Google Scholar 

  85. Giaccio, M. (2004). Crocetin from saffron: An active component of an ancient spice. Critical Reviews in Food Science and Nutrition, 44(3), 155–172.

    Article  CAS  PubMed  Google Scholar 

  86. Dadkhah, M. R., Ehtesham, M., & Fekrat, H. (2003). Iranian saffron an unknown jewel (pp. 1–20). Shahr Ashoob Publication.

    Google Scholar 

  87. Colledge, M. A. R. (2009). The Parthians, translated to Persian by Masoud Rajabnia. Hirmand Publication.

    Google Scholar 

  88. Raja, A. S. M., Pareek, P. K., Shakyawar, D. B., Wani, S. A., Nehvi, F. A., & Sof, A. H. (2012). Extraction of natural dye from saffron flower waste and its application on pashmina fabric. Advances in Applied Science Research, 3, 156–161.

    CAS  Google Scholar 

  89. Bathaie, S. Z., Farajzade, A., & Hoshyar, R. (2014). A review of the chemistry and uses of crocins and crocetin, the carotenoid natural dyes in safron, with particular emphasis on applications as colorants including their use as biological stains. Biotech Histochemistry, 89, 401–411.

    Article  CAS  Google Scholar 

  90. Winterhalter, P., & Straubinger, M. (2000). Saffron—renewed interest in an ancient spice. Food Reviews International, 16(1), 39–59.

    Article  CAS  Google Scholar 

  91. Nemati, Z., Harpke, D., Gemicioglu, A., Kerndorff, H., & Blattner, F. R. (2019). Saffron (Crocus sativus) is an autotriploid that evolved in Attica (Greece) from wild Crocus cartwrightianus. Molecular Phylogenetics and Evolution, 136, 14–20.

    Article  PubMed  Google Scholar 

  92. Halvorson, S. (2008). Saffron cultivation and culture in Central Spain. FOCUS on Geography, 51(1), 17–24.

    Article  Google Scholar 

  93. Melnyk, J. P., Wang, S., & Marcone, M. F. (2010). Chemical and biological properties of the world’s most expensive spice: Saffron. Food Research International Journal, 43, 1981–1989.

    Article  CAS  Google Scholar 

  94. Dai, R. C., Nabil, W. N. N., & Xu, H. X. (2021). The history of saffron in China: From its origin to applications. Chinese Medicine and Culture, 4(4), 228–234.

    Article  Google Scholar 

  95. D’Alessandro, A. M., Mancini, A., Lizzi, A. R., De-Simone, A., Marroccella, C. E., Gravina, G. L., Tatone, C., & Festuccia, C. (2013). Crocus sativus stigma extract and its major constituent crocin possess significant antiproliferative properties against human prostate cancer. Nutrition and Cancer, 65, 930–942.

    Article  PubMed  Google Scholar 

  96. Lu, P., Lin, H., Gu, Y., Li, L., Guo, H., Wang, F., & Qiu, X. (2015). Antitumor effects of crocin on human breast cancer cells. International Journal of Clinical and Experimental Medicine, 8(11), 20316–20322.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bakshi, H. A., Hakkim, F. L., & Sam, S. (2016). Molecular mechanism of crocin induced caspase mediated MCF-7 cell death: In vivo toxicity profiling and ex vivo macrophage activation. Asian Pacific Journal of Cancer Prevention, 17(3), 1499–1506.

    Article  PubMed  Google Scholar 

  98. Mostafavinia, S. E., Khorashadizadeh, M., & Hoshyar, R. (2016). Antiproliferative and proapoptotic effects of crocin combined with hyperthermia on human breast cancer cells. DNA and Cell Biology, 35(7), 340–347.

    Article  CAS  PubMed  Google Scholar 

  99. Hire, R. R., Srivastava, S., Davis, M. B., Kumar Konreddy, A., & Panda, D. (2017). Antiproliferative activity of crocin involves targeting of microtubules in breast cancer cells. Scientific Reports, 7(1), 1–11.

    Article  Google Scholar 

  100. Chryssanthi, D. G., Lamari, F. N., Iatrou, G., Pylara, A., Karamanos, N. K., & Cordopatis, P. (2007). Inhibition of breast cancer cell proliferation by style constituents of different crocus species. Anticancer Research, 27(1A), 357–362.

    CAS  PubMed  Google Scholar 

  101. Ashrafi, M., Bathaie, S. Z., Abroun, S., & Azizian, M. (2015). Effect of crocin on cell cycle regulators in N-nitroso-N-methylurea-induced breast cancer in rats. DNA and Cell Biology, 34(11), 684–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arzi, L., Farahi, A., Jafarzadeh, N., Riazi, G., Sadeghizadeh, M., & Hoshyar, R. (2018). Inhibitory effect of crocin on metastasis of triple-negative breast cancer by interfering with Wnt/β-catenin pathway in murine model. DNA and Cell Biology, 37(12), 1068–1075.

    Article  CAS  PubMed  Google Scholar 

  103. Xia, D. (2015). Ovarian cancer HO-8910 cell apoptosis induced by crocin in vitro. Natural Product Communications, 10(2), 1934578X1501000208.

    Article  CAS  Google Scholar 

  104. Hoshyar, R., & Mollaei, H. (2017). A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. Journal of Pharmacy and Pharmacology, 69(11), 1419–1427.

    Article  CAS  PubMed  Google Scholar 

  105. Amin, A., Bajbouj, K., Koch, A., Gandesiri, M., & Schneider-Stock, R. (2015). Defective autophagosome formation in p53-null colorectal cancer reinforces crocin-induced apoptosis. International Journal of Molecular Sciences, 16(1), 1544–1561. [

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou, Y., Xu, Q., Shang, J., Lu, L., & Chen, G. (2019). Crocin inhibits the migration, invasion, and epithelial-mesenchymal transition of gastric cancer cells via miR-320/KLF5/HIF-1α signaling. Journal of Cellular Physiology, 234(10), 17876–17885.

    Article  CAS  PubMed  Google Scholar 

  107. Akbarpoor, V., Karimabad, M. N., Mahmoodi, M., & Mirzaei, M. R. (2020). The saffron effects on expression pattern of critical self-renewal genes in adenocarcinoma tumor cell line (AGS). Gene Reports, 19, 100629.

    Article  CAS  Google Scholar 

  108. Li, C. Y., Huang, W. F., Wang, Q. L., Wang, F., Cai, E., Hu, B., & Li, H. H. (2012). Crocetin induces cytotoxicity in colon cancer cells via p53-independent mechanisms. Asian Pacific Journal of Cancer Prevention, 13(8), 3757–3761.

    Article  PubMed  Google Scholar 

  109. Amerizadeh, F., Rezaei, N., Rahmani, F., Hassanian, S. M., Moradi-Marjaneh, R., Fiuji, H., Boroumand, N., Nosrati-Tirkani, A., Ghayour-Mobarhan, M., Ferns, G. A., et al. Crocin synergistically enhances the antiproliferative activity of 5-flurouracil through Wnt/PI3K pathway in a mouse model of colitis-associated colorectal cancer. Journal and Cell Biochemistry, 119, 10250–10261.

    Google Scholar 

  110. Fujimoto, K., Ohta, T., Yamaguchi, H., Tung, N. H., Fujii, G., Mutoh, M., & Shoyama, Y. (2019). Suppression of polyps formation by saffron extract in adenomatous polyposis coliMin/+ mice. Pharmacognosy Research, 11(1), 98.

    Article  CAS  Google Scholar 

  111. Festuccia, C., Mancini, A., Gravina, G. L., Scarsella, L., Llorens, S., Alonso, G. L., et al. (2014). Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. BioMed Research International, 2014, 135048.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chen, S., Zhao, S., Wang, X., Zhang, L., Jiang, E., Gu, Y., et al. (2015). Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells. Translational Lung Cancer Research, 4(6), 775–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Moradzadeh, M., Kalani, M. R., & Avan, A. (2019). The antileukemic effects of saffron (Crocus sativus L.) and its related molecular targets: A mini review. Journal of Cellular Biochemistry, 120(4), 4732–4738.

    Article  CAS  PubMed  Google Scholar 

  114. Moradzadeh, M. A. L. I. H. E. H., Tabarraei, A. L. I. J. A. N., Ghorbani, A. H. M. A. D., Hosseini, A. Z. A. R., & Sadeghnia, H. R. (2018). Short-term in vitro exposure to crocetin promotes apoptosis in human leukemic HL-60 cells via intrinsic pathway. Acta Poloniae Pharmaceutica Drug Research, 75(2), 445–451.

    CAS  Google Scholar 

  115. Geromichalos, G. D., Papadopoulos, T., Sahpazidou, D., & Sinakos, Z. (2014). Safranal, a Crocus sativus L constituent suppresses the growth of K-562 cells of chronic myelogenous leukemia. In silico and in vitro study. Food and Chemical Toxicology, 74, 45–50.

    Article  CAS  PubMed  Google Scholar 

  116. Shakeri, M., Tayer, A. H., Shakeri, H., Jahromi, A. S., Moradzadeh, M., & Hojjat-Farsangi, M. (2020). Toxicity of saffron extracts on cancer and normal cells: A review article. Asian Pacific Journal of Cancer Prevention: APJCP, 21(7), 1867–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mousavi, S. H., Tavakkol-Afshari, J., Brook, A., & Jafari-Anarkooli, I. (2009). Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. Food and Chemical Toxicology, 47(8), 1909–1913.

    Article  CAS  PubMed  Google Scholar 

  118. Mousavi, M., & Baharara, J. (2014). Effect of Crocus sativus L. on expression of VEGF-A and VEGFR-2 genes (angiogenic biomarkers) in MCF-7 cell line. Zahedan. Journal of Research in Medical Sciences, 16(12), 9–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arusa Aftab or Zubaida Yousaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Javed, S., Hanif, S., Aftab, A., Yousaf, Z., Moga, M. (2023). Saffron. In: Zia-Ul-Haq, M., Abdulkreem AL-Huqail, A., Riaz, M., Farooq Gohar, U. (eds) Essentials of Medicinal and Aromatic Crops. Springer, Cham. https://doi.org/10.1007/978-3-031-35403-8_42

Download citation

Publish with us

Policies and ethics