Skip to main content

Deep-Sea Corals of the North and Central Pacific Seamounts

  • Chapter
  • First Online:
Cold-Water Coral Reefs of the World

Abstract

The North and Central Pacific are home to a number of major archipelagos including Hawaii, the Marianas, Samoa, Line Islands, Phoenix Islands, and Marshall Islands, and numerous seamounts associated with each of these island groups. These islands span from 14°S, the latitude of American Samoa in the South Pacific, to Kure Atoll at 28°N latitude in the Central North Pacific, with seamounts continuing along the Hawaiian Ridge northwest into the Emperor Seamount Chain. Although all are generally remote, some of these island and seamount chains are so isolated (Hawaii and the Northwestern Hawaiian Islands) that they have some of the world’s highest levels of marine endemism. Differences across the Central Pacific have been documented in the extensive shallow tropical coral reef communities through two decades of directed assessment and monitoring efforts for the subgroup of sites that include the US Pacific Islands. It is likely that deeper coral communities also differ across this region, however, broader explorations of mesophotic and deep-sea communities are needed to document these patterns. Extensive explorations have been undertaken in the Hawaiian Archipelago and started to expand to the rest of the Central Pacific in 2015. Within the North and Central Pacific, deep-sea scleractinian reefs are so far only known to occur from the far end of the Northwestern Hawaiian Islands (NWHI) and lower end of the Emperor Seamount Chain (ESC), and from the Phoenix Islands, thus this chapter will focus on those regions. In all areas of the North and Central Pacific so far explored, dense beds of octocorals and antipatharian corals are instead generally the dominant benthic megafaunal taxa on deep-sea hard substrates, occupying the same functional roles and niche as scleractinian reefs, but far more common and extensively distributed, thus they will also be frequently mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins JF, Henderson GM, Wang SL et al (2004) Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth Planet Sci Lett 227:481–490. https://doi.org/10.1016/j.epsl.2004.08.022

    Article  CAS  Google Scholar 

  • Alcock A (1898) An account of the deep-sea Madreporaria collected by the Royal Indian Marine Survey Ship “Investigator”. Trustees of the Indian Museum, Calcutta. pp. 1–29, pls. 1–3, available online at https://doi.org/10.5962/bhl.title.27614

  • Alcock A (1902) Diagnoses and descriptions of new species of corals from the “Siboga-Expedition”. Tijdschrift der Nederlandse Dierkundige Vereeniging (Ser. 2) 7:89–115

    Google Scholar 

  • Althaus F, Williams A, Schlacher TA et al (2009) Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Mar Ecol Prog Ser 397:279–294. https://doi.org/10.3354/meps08248

    Article  Google Scholar 

  • Amon DJ, Kennedy BRC, Cantwell K et al (2020) Deep-sea debris in the Central and Western Pacific Ocean. Front Mar Sci 7:1–16. https://doi.org/10.3389/fmars.2020.00369

    Article  Google Scholar 

  • Andrews AH, Cailliet GM, Kerr LA et al (2005) In: Friewald A, Roberts JM (eds) Investigations of age and growth for three deep-sea corals from the Davidson Seamount off central California. Springer-Verlag, pp 1021–1038

    Google Scholar 

  • Auscavitch SR, Deere MC, Keller AG et al (2020a) Oceanographic drivers of deep-sea coral species distribution and community assembly on seamounts, islands, atolls, and reefs within the Phoenix Islands protected area. Front Mar Sci 7:1–15. https://doi.org/10.3389/fmars.2020.00042

    Article  Google Scholar 

  • Auscavitch S, Pockalny R, Konrad K et al (2020b) Deepwater exploration of Kingman Reef, Palmyra Atoll, and Jarvis Island: geological and biological discoveries from the US Line Islands. Oceanography 33:38–39. https://doi.org/10.5670/oceanog.2020.supplement.01

    Article  Google Scholar 

  • Auster PJ, Malatesta RJ, LaRosa SC (1995) Patterns of microhabitat utilization by mobile megafauna on the southern New England (USA) continental shelf and slope. Mar Ecol Progr Ser 127:77–85

    Article  Google Scholar 

  • Auster PJ, Moore J, Heinonen KB, Watling L (2005) A habitat classification scheme for seamount landscapes: assessing the functional role of deep-water corals as fish habitat. In: Friewald A, Roberts JM (eds) . Springer, New York, pp 761–769

    Google Scholar 

  • Baco AR (2007) Exploration for deep-sea corals on North Pacific seamounts and islands. Oceanography 20:108–117. https://doi.org/10.5670/oceanog.2007.11

    Article  Google Scholar 

  • Baco AR, Morgan N, Roark EB et al (2017) Defying dissolution: discovery of deep-sea scleractinian coral reefs in the North Pacific. Sci Rep 7. https://doi.org/10.1038/s41598-017-05492-w

  • Baco AR, Roark EB, Morgan NB (2019) Amid fields of rubble, scars, and lost gear, signs of recovery observed on seamounts on 30-40 year time scales. Sci Adv 5:eaaw 4513

    Article  Google Scholar 

  • Baco AR, Morgan NB, Roark EB (2020) Observations of vulnerable marine ecosystems and significant adverse impacts on high seas seamounts of the Northwestern Hawaiian Ridge and Emperor Seamount Chain. Mar Policy 115. https://doi.org/10.1016/j.marpol.2020.103834

  • Baillon S, Hamel J-F, Wareham VE, Mercier A (2012) Deep cold-water corals as nurseries for fish larvae. Front Ecol Environ 10:351–356. https://doi.org/10.1890/120022

    Article  Google Scholar 

  • Baillon S, Hamel J, Mercier A (2014) Diversity, distribution and nature of faunal associations with deep-sea pennatulacean corals in the Northwest Atlantic. PLoS One 9:e111519

    Article  PubMed  PubMed Central  Google Scholar 

  • Battaglia P, Consoli P, Ammendolia G et al (2019) Colonization of floats from submerged derelict fishing gears by four protected species of deep-sea corals and barnacles in the Strait of Messina (central Mediterranean Sea). Mar Pollut Bull 148:61–65. https://doi.org/10.1016/j.marpolbul.2019.07.073

    Article  CAS  PubMed  Google Scholar 

  • Bauer LM, M Poti, BM Costa, et al (2016) Benthic habitats and corals. In: BM Costa and MS Kendall (eds.) Marine biogeographic assessment of the Main Hawaiian Islands. Bureau of ocean energy management and national oceanic and atmospheric administration. OCS study BOEM 2016-035 and NOAA Technical Memorandum NOS NCCOS 214, pp 57–136

    Google Scholar 

  • Bidigare RR, Benitez-Nelson C, Leonard CL et al (2003) Influence of a cyclonic eddy on microheterotroph biomass and carbon export in the lee of Hawaii. Geophys Res Lett 30. https://doi.org/10.1029/2002GL016393

  • Boschen RE, Rowden, AA, Clark, MR, Gardner JPA (2013) Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast Manag 84:54–67. https://doi.org/10.1016/j.ocecoaman.2013.07.005

  • Bostock HC, Opdyke BN, Williams MJM (2010) Characterising the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers. Deep Res Part I Oceanogr Res Pap 57:847–859. https://doi.org/10.1016/j.dsr.2010.04.005

    Article  CAS  Google Scholar 

  • Brainard RE, Oliver T, McPhaden MJ, Cohen A, Venegas R, Heenan A, Vargas-Ángel B, Rotjan R, Mangubhai S, Flint E, Hunter S (2018) Ecological impacts of the 2015/16 El Niño in the Central Equatorial Pacific. Am Meteorol Soc 99:521–526

    Article  Google Scholar 

  • Brainard RE, Acoba T, Asher MAM, et al (2019) Chapter 9: Pacific Remote Islands Marine National Monument in the Pacific-wide context. In: Coral reef ecosystem monitoring report for the Pacific Remote Islands Marine National Monument 2000–2017. Pacific Islands Fisheries Science Center, PIFSC Special Publication, SP-19-006i. 72 p. doi:https://doi.org/10.25923/rwd2-2118

  • Brooke S, Young C (2009) In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar Ecol Prog Ser 397:153–161. https://doi.org/10.3354/meps08344

    Article  Google Scholar 

  • Buhl-Mortensen L, Vanreusel A, Gooday AJ et al (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol 31:21–50. https://doi.org/10.1111/j.1439-0485.2010.00359.x

    Article  Google Scholar 

  • Buhl-Mortensen P, Buhl-Mortensen L, Purser A (2016) Trophic ecology and habitat provision in cold-water coral ecosystems. Mar Anim For. https://doi.org/10.1007/978-3-319-17001-5

  • Buhl-Mortensen P, Buhl-Mortensen L, Purser A (2017) Marine animal forests. Mar Anim For. https://doi.org/10.1007/978-3-319-17001-5

  • Burgess SN, Babcock RC (2005) Reproductive ecology of three reef-forming, deep-sea corals in the New Zealand region. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 701–713

    Chapter  Google Scholar 

  • Büscher JV, Form AU, Riebesell U (2017) Interactive effects of ocean acidification and warming on growth, fitness and survival of the cold-water coral Lophelia pertusa under different food availabilities. Front Mar Sci 4(Apr):1–14. https://doi.org/10.3389/fmars.2017.00101

    Article  Google Scholar 

  • Cairns SD (1979) The deep-water Scleractinia of the Caribbean sea and adjacent waters. Stud Fauna Curacao other Caribb Islands

    Google Scholar 

  • Cairns SD (1982) Antarctic and Subantarctic Scleractinia. Biol Antarct Seas XI 34:1–74. https://doi.org/10.1029/ar034p0001

    Article  Google Scholar 

  • Cairns SD (1984) New records of ahermatypic corals (Scleractinia) from the Hawaiian and Line Islands. Bish Museum Occas Pap XXV:1–30

    Google Scholar 

  • Cairns SD (1999) Species richness of recent Scleractinia. National Museum of Natural History, Smithsonian Institution

    Google Scholar 

  • Cairns SD (2005) Revision of the Hawaiian stylasteridae (Cnidaria: Hydrozoa: Athecata). Pacific Sci 59:439–451. https://doi.org/10.1353/psc.2005.0034

    Article  Google Scholar 

  • Cairns SD (2006) New records of Azooxanthellate Scleractinia from the Hawaiian Islands. Bish Museum Occas Pap 87:45–53

    Google Scholar 

  • Cairns SD (2007) Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull Mar Sci 81:311–322

    Google Scholar 

  • Cairns SD (2017) New species of stylasterid (Cnidaria: Hydrozoa: Anthoathecata: Stylasteridae) from the Northwestern Hawaiian Islands. Pacific Sci 71:77–81. https://doi.org/10.2984/71.1.7

    Article  Google Scholar 

  • Cairns SD, Stanley GD (1981) Ahermatypic coral banks: living and fossil counterparts. Proc Fourth Int Coral Reef Symp Manila 1(1):611–618

    Google Scholar 

  • Carlier A, Le Guilloux E, Olu K et al (2009) Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca Ionian Sea). Mar Ecol Prog Ser 397:125–137. https://doi.org/10.3354/meps08361

    Article  CAS  Google Scholar 

  • Carter BR, Feely RA, Mecking S et al (2017) Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Ship-based Hydrographic Investigations Program sections P16 and P02. Glob Biogeochem Cycles 31:306–327. https://doi.org/10.1002/2016GB005485

    Article  CAS  Google Scholar 

  • Chapron L, Le Bris N, Durrieu de Madron X et al (2020) Long term monitoring of cold-water coral growth shows response to episodic meteorological events in the NW Mediterranean. Deep Res Part I Oceanogr Res Pap 160. https://doi.org/10.1016/j.dsr.2020.103255

  • Christiansen B, Denda A, Christiansen S (2020) Potential effects of deep seabed mining on pelagic and benthopelagic biota. Mar Policy 114:103442. https://doi.org/10.1016/j.marpol.2019.02.014

    Article  Google Scholar 

  • Clark MR, Koslow JA (2007) Impacts of fisheries on seamounts. In: Pitcher T, Morato T, Hart PJB, et al. (eds). Wiley Online Library, pp 413–441

    Google Scholar 

  • Clark MR, Rowden AA (2009) Effect of deepwater trawling on the macro-invertebrate assemblages of seamounts on the Chatham Rise, New Zealand. Deep Sea Res Part I Oceanogr Res Pap 56:1540–1554. https://doi.org/10.1016/j.dsr.2009.04.015

    Article  Google Scholar 

  • Clark MR, Vinnichenko VI, Gordon JD, Beck-Bulat GZ, Kukharev NN, Kakora AF (2007) Large-scale distant water trawl fisheries on seamounts. In: Pitcher TJ, Morato T, Hart PJ, Clark MR, Haggan N, Santos RS (eds) Seamounts: ecology, fisheries, and conservation, Blackwell fisheries and aquatic resources series, pp 361–399

    Chapter  Google Scholar 

  • Clark MR, Kelley C, Baco A, Rowden AA (2009) Fauna of cobalt-rich crust seamounts. WLG2009 63:1–61

    Google Scholar 

  • Clark MR, Shank TM, Hall-Spencer JM et al (2010) The ecology of seamounts: structure, function, and human impacts. Ann Rev Mar Sci 2:253–278. https://doi.org/10.1146/annurev-marine-120308-081109

    Article  PubMed  Google Scholar 

  • Clark MR, Althaus F, Schlacher TA et al (2016) The impacts of deep-sea fisheries on benthic communities: a review. ICES J Mar Sci 73:i51–i69. https://doi.org/10.1093/icesjms/fsv123

    Article  Google Scholar 

  • Clark MR, Bowden DA, Rowden AA, Stewart R (2019) Little evidence of benthic community resilience to bottom trawling on seamounts after 15 years. Front Mar Sci 6:1–16. https://doi.org/10.3389/fmars.2019.00063

    Article  Google Scholar 

  • Coates AG, Kauffman EG (1973) Stratigraphy, paleontology and paleoenvironment of a Cretaceous coral thicket, Lamy, New Mexico. J Paleontol 47:953–968

    Google Scholar 

  • Costa B, Kendall MS, Parrish FA, et al (2015) Identifying suitable locations for mesophotic hard corals offshore of Maui, Hawaii. PLoS One. doi:https://doi.org/10.1371/journal.pone.0130285

  • Costello MJ, McCrea M, Freiwald A et al (2005) Role of cold-water Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. In: Cold-water corals and ecosystems. Springer, Berlin, pp 771–805

    Chapter  Google Scholar 

  • Coutis PF, Middleton JH (2002) The physical and biological impact of a small island wake in the deep ocean. Deep Res Part I Oceanogr Res Pap 49:1341–1361

    Article  Google Scholar 

  • D’Onghia G, Maiorano P, Carlucci R et al (2012) Comparing deep-sea fish fauna between coral and non-coral “megahabitats” in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea). PLoS One 7(9):e44509

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies AJ, Guinotte JM (2011) Global habitat suitability for framework-forming cold-water Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. In: Cold-water corals and ecosystems. Springer, Berlin, pp 771–805

    Google Scholar 

  • Davis AS, Gray LB, Clague DA, Hein JR (2002) The Line Islands revisited: New 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension. Geochem Geophys Geosystems 3:1–28. https://doi.org/10.1029/2001gc000190

    Article  Google Scholar 

  • De Goeij JM, Van Oevelen D, Vermeij MJA et al (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science (80) 342:108–110. 6:e18483. https://doi.org/10.1126/science.1241981

    Article  CAS  Google Scholar 

  • Demopoulos A, Auscavitch S, Sowers D et al (2018) Discovering the deep: exploring remote Pacific marine protected areas. Oceanog 31:76–77. https://10.5670/oceanog.2018.supplement.01

    Google Scholar 

  • Desch A, Wynne T, Brainard R, Friedlander A, et al (2009) Oceanographic and physical setting. A marine biogeographic assessment of the Northwestern Hawaiian Islands. Silver Spring: NOAA, 17–63.

    Google Scholar 

  • Deser C, Alexander MA, Timlin MS (1996) Upper-ocean thermal variations in the North Pacific during 1970-1991. J Clim 9:1840–1855

    Article  Google Scholar 

  • Dolan MFJ, Grehan AJ, Guinan JC, Brown C (2008) Modelling the local distribution of cold-water corals in relation to bathymetric variables: adding spatial context to deep-sea video data. Deep Res Part I Oceanogr Res Pap 55:1564–1579. https://doi.org/10.1016/j.dsr.2008.06.0101371/journal.pone.0018483

    Article  Google Scholar 

  • Dons C (1944) Norges korallrev. Det kongelige norske videnskabers selskabs forhandlinger. 16:37–82

    Google Scholar 

  • Druffel ERM, King LL, Belastock RA, Buesseler KO (1990) Growth rate of a deep-sea coral using 210Pb and other isotopes. Geochim Cosmochim Acta 54:1493–1499. https://doi.org/10.1016/0016-7037(90)90174-J

    Article  CAS  Google Scholar 

  • Duncan M (1873) A description of the Madreporaria dredged up during the expeditions of H.M.S. ‘Porcupine’ in 1869 and 1870. Trans Zool Soc London 8:303–343

    Article  Google Scholar 

  • Ehrenberg CG (1832) Beiträge zur physiologischen Kenntniss der Corallenthiere im allegmeinen, und besonders des Rothen Meeres, nebst einem Versuch zur physiologischen Systematik derselben. Physikalische-Mathematische Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin 1:225–380

    Google Scholar 

  • Emery WJ (2001) Water types and water masses. https://doi.org/10.1006/rwos.2001.0108

  • Fadlallah YH, Pearse JS (1982) Sexual reproduction in solitary corals: overlapping oogenic and brooding cycles, and benthic planulas in Balanophyllia elegans. Mar Biol 71:223–231. https://doi.org/10.1007/BF00397039

    Article  Google Scholar 

  • Fallon SJ, Thresher RE, Adkins J (2014) Age and growth of the cold-water scleractinian Solenosmilia variabilis and its reef on SW Pacific seamounts. Coral Reefs 33:31–38. https://doi.org/10.1007/s00338-013-1097-y

    Article  Google Scholar 

  • Feehan KA, Waller RG, Häussermann V (2019) Highly seasonal reproduction in deep-water emergent Desmophyllum dianthus (Scleractinia: Caryophylliidae) from the Northern Patagonian Fjords. Mar Biol 166:1–13. https://doi.org/10.1007/s00227-019-3495-3

    Article  Google Scholar 

  • Feely RA, Sabine CL, Lee K et al (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366. https://doi.org/10.1126/science.1097329

    Article  CAS  PubMed  Google Scholar 

  • Feely RA, Sabine CL, Byrne RH et al (2012) Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean. Glob Biogeochem Cycles 26. https://doi.org/10.1029/2011GB004157

  • Finlayson VA, Konter JG, Konrad K et al (2018) Sr–Pb–Nd–Hf isotopes and 40Ar/39Ar ages reveal a Hawaii–Emperor-style bend in the Rurutu hotspot. Earth Planet Sci Lett 500:168–179

    Article  CAS  Google Scholar 

  • Firing J, Brainard RE (2006) Ten years of shipboard ADCP measurements along the Northwestern Hawaiian Islands. Atoll Res Bull 543:347–363

    Google Scholar 

  • Floris S (1972) Scleractinian corals from the Upper Cretaceous and Lower Tertiary of Nugssuaq, West Greenland

    Google Scholar 

  • Foley NS, Kahui V, Armstrong CW, Van Rensburg TM (2010) Estimating linkages between redfish and cold-water coral on the Norwegian coast. Mar Resour Econ 25:105–120

    Article  Google Scholar 

  • Fosså JH, Mortensen PB, Furevik DM (2002) The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts. Hydrobiologia 471(1–3):1–12

    Article  Google Scholar 

  • Friedlander A, Aeby G, Brainard, R, et al (2005) The state of the coral reef ecosystem of the Northwestern Hawaiian Islands. In: Waddell JE (ed) The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States, pp 270–311

    Google Scholar 

  • Gammon MJ, Tracey DM, Marriott PM et al (2018) The physiological response of the deep- sea coral Solenosmilia variabilis to ocean acidification. PeerJ 2018:1–24. https://doi.org/10.7717/peerj.5236

    Article  CAS  Google Scholar 

  • Gass SE, Roberts JM (2006) The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: Colony growth, recruitment and environmental controls on distribution. Mar Pollut Bull 52:549–559. https://doi.org/10.1016/j.marpolbul.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  • Genin A, Dayton PK, Lonsdale PF, Spiess FN (1986) Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322:59–61. https://doi.org/10.1038/322059a0

    Article  Google Scholar 

  • Georgian SE, Dupont S, Kurman M, Butler A, Stromberg SM, Larsson AI, Cordes EE (2016) Biogeographic variability in the physiological response of the cold-water coral Lophelia pertusa to ocean acidification. Mar Ecol 37(6):1345–1359

    Article  Google Scholar 

  • Gillard B, Purkiani K, Chatzievangelou D et al (2019) Physical and hydrodynamic properties of deep sea mining-generated, abyssal sediment plumes in the Clarion Clipperton Fracture Zone (eastern-central Pacific). Elem Sci Anth 7. https://doi.org/10.1525/elementa.343

  • Gilmore RG, Jones RS (1992) Color variation and associated behavior in the epihepheline groupers, Mycteroperca microlepis (Goode and Bean) and M. phenax Jordan and Swain. Bull Mar Sci 51:83–103

    Google Scholar 

  • Gollner S, Kaiser S, Menzel L et al (2017) Resilience of benthic deep-sea fauna to mining activities. Mar Environ Res 129:76–101. https://doi.org/10.1016/j.marenvres.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  • Gómez CE, Wickes L, Deegan D et al (2018) Growth and feeding of deep-sea coral Lophelia pertusa from the California margin under simulated ocean acidification conditions. PeerJ. https://doi.org/10.7717/peerj.5671

  • Gori A, Grover R, Orejas C et al (2014) Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea. Deep Sea Res Part II Top Stud Oceanogr 99:42–50. https://doi.org/10.1016/j.dsr2.2013.06.007

    Article  CAS  Google Scholar 

  • Gove JM, Merrifield MA, Brainard RE (2006) Temporal variability of current-driven upwelling at Jarvis Island. J Geophys Res 111:C12011. https://doi.org/10.1029/2005JC003161

    Article  Google Scholar 

  • Gove JM, Williams GJ, McManus MA et al (2013) Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems. PLoS One 8:e61974. https://doi.org/10.1371/journal.pone.0061974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigg RW (1988) Paleoceanography of coral reefs in the Hawaiian-Emperor Chain. Science 240:1737–1743. https://doi.org/10.1126/science.240.4860.1737

    Article  CAS  PubMed  Google Scholar 

  • Grigg RW (2002) Precious corals in Hawaii: discovery of a new bed and revised management measures for existing beds. Mar Fish Res Rev 64:13–20

    Google Scholar 

  • Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807. https://doi.org/10.1126/science.275.5301.805

    Article  CAS  PubMed  Google Scholar 

  • Guinotte JM, Orr J, Cairns S et al (2006) Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4:141–146

    Article  Google Scholar 

  • Hall-Spencer J, Allain V, Fosså JH (2002) Trawling damage to Northeast Atlantic ancient coral reefs. Proc R Soc Lond B Biol Sci 269:507–511. https://doi.org/10.1098/rspb.2001.1910

    Article  Google Scholar 

  • Hanz U, Wienberg C, Hebbeln D, Duineveld G, Lavaleye M, Juva K et al (2019) Environmental factors influencing benthic communities in the oxygen minimum zones on the Angolan and Namibian margins. Biogeosciences 16:4337–4356. https://doi.org/10.5194/bg-16-4337-2019

    Article  CAS  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam, pp 133–207

    Google Scholar 

  • Hayashibara T, Nishida K (2017) Results of the bottom environmental survey of the Emperor Seamounts Chain trawl fishing grounds in 2016: exploration for spatial extent of known coral assemblages and distribution of bycatch corals collected by a trawl operation. NPFC-2017-SSC VME02-WP4. 13p

    Google Scholar 

  • Heifetz J (2002) Coral in Alaska: distribution, abundance and species associations. Hydrobiologia 471(1-3):19–28

    Article  Google Scholar 

  • Heifetz J, Stone R, Shotwell S (2009) Damage and disturbance to coral and sponge habitat of the Aleutian Archipelago. Mar Ecol Prog Ser 397:295–303. https://doi.org/10.3354/meps08304

    Article  Google Scholar 

  • Hein JR (2016) Manganese nodules. In: Harff J (ed) Encyclopedia of marine geosciences. Encyclopedia of earth sciences series. Springer, Dordrecht, pp 408–412

    Google Scholar 

  • Hein JR, McIntyre BR, Piper DZ (2005) Marine mineral resources of Pacific Islands - a review of the exclusive economic zones of Islands of U.S. affiliation, excluding the State of Hawaii. US Geol Surv Circ, pp 1–68

    Google Scholar 

  • Hein JR, Conrad TA, Dunham RE (2009) Seamount characteristics and mine-site model applied to exploration- and mining-lease-block selection for cobalt-rich ferromanganese crusts. Mar Georesour Geotechnol 27:160–176. https://doi.org/10.1080/10641190902852485

    Article  CAS  Google Scholar 

  • Hein JR, Mizell K, Koschinsky A, Conrad TA (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geol Rev 51:1–14. https://doi.org/10.1016/j.oregeorev.2012.12.001

    Article  Google Scholar 

  • Hennige S, Wolfram U, Wickes L et al (2020) Crumbling reefs and cold-water coral habitat loss in a future ocean: evidence of “coralporosis” as an indicator of habitat integrity. Front Mar Sci 7:1–16. https://doi.org/10.3389/fmars/2020/00668

    Article  Google Scholar 

  • Henriet JP, De Mol B, Vanneste M et al (2001) Carbonate mounds and slope failures in the Porcupine Basin: a development model involving fluid venting. Geol Soc Spec Publ 188:375–383. https://doi.org/10.1144/GSL.SP.2001.188.01.22

    Article  CAS  Google Scholar 

  • Hill TM, Spero HJ, Guilderson T et al (2011) Temperature and vital effect controls on bamboo coral (Isididae) isotope geochemistry: a test of the “lines method”. Geochem Geophys Geosyst 12. https://doi.org/10.1029/2010GC003443

  • Hong L, Zhang L, Chen Z, Wu L (2014) Linkage between the Pacific Decadal Oscillation and the low frequency variability of the Pacific Subtropical Cell. J Geophys Res Oceans 119(6):3464–3477

    Article  Google Scholar 

  • Houlbreque F, McCulloch M, Roark B et al (2010) Uranium-series dating and growth characteristics of the deep-sea scleractinian coral: Enallopsammia rostrata from the Equatorial Pacific. Geochim Cosmochim Acta 74:2380–2395

    Article  CAS  Google Scholar 

  • Howell KL, Billett DSM, Tyler PA (2002) Depth-related distribution and abundance of seastars (Echinodermata: Asteroidea) in the Porcupine Seabight and Porcupine Abyssal Plain, N.E. Atlantic. Deep Sea Res Part I Oceanogr Res Pap 49:1901–1920. https://doi.org/10.1016/S0967-0637(02)00090-0

    Article  Google Scholar 

  • Husebø Å, Nøttestad L, Fosså JH et al (2002) Distribution and abundance of fish in deep-sea coral habitats. Hydrobiologia 471(1-3):91–99

    Article  Google Scholar 

  • Iida K et al (1996) Relationship between acoustic backscattering strength and density of zooplankton in the sound-scattering layer. ICES J Mar Sci 53:507–512. https://doi.org/10.1006/jmsc.1996.0073

  • Jones DO, Yool A, Wei C et al (2014) Global reductions in seafloor biomass in response to climate change. Glob Chang Biol 20:1861–1872. https://doi.org/10.1111/gcb.12480

    Article  PubMed  Google Scholar 

  • Kahng SE, Garcia-Sais JR, Spalding HL et al (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275. https://doi.org/10.1007/s00338-010-0593-6

    Article  Google Scholar 

  • Kamenkovich VM, Koshlyakov MN, Monin AS (1986) Eddies in the open ocean. In: Synoptic eddies in the ocean. Springer, Netherlands, pp 265–376

    Chapter  Google Scholar 

  • Kane C, Kosaki RK, Wagner D (2014) High levels of mesophotic reef fish endemism in the Northwestern Hawaiian Islands. Bull Mar Sci 90(2):693–703

    Article  Google Scholar 

  • Kennett JP (1982) The geologic record of bottom currents. In: Marine Geology. Prentice Hall, Englewood Cliffs, NJ, pp 505–534

    Google Scholar 

  • Kiriakoulakis K, Fisher E, Wolff GA et al (2006) Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their nutrition. Cold-Water Corals Ecosyst 715–729. https://doi.org/10.1007/3-540-27673-4_37

  • Kitahara MV, Cairns SD, Stolarski J, Blair D, Miller DJ (2010) A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS One 5(7):e11490

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitahara MV, Fukami H, Benzoni F, Huang D (2016) The new systematics of scleractinia: integrating molecular and morphological evidence. In: Goffredo S, Dubinsky Z (eds) The cnidaria, past, present and future. Springer International, pp 41–59

    Chapter  Google Scholar 

  • Kleeman R, McCreary JP Jr, Klinger BA (1999) A mechanism for generating ENSO decadal variability. Geophys Res Lett 26(12):1743–1746

    Article  Google Scholar 

  • Knauss JA (1996) Introduction to physical oceanography. Prentice Hall, Englewood Cliffs, NJ, p 338

    Google Scholar 

  • Koenig CC, Coleman FC, Grimes CB et al (2000) Protection of fish spawning habitat for the conservation of warm temperate reef fish fisheries of shelf-edge reefs of Florida. Bull Mar Sci 66:593–616

    Google Scholar 

  • Koppers AAP, Staudigel H (2005) Asynchronous bends in Pacific seamount trails: a case for extensional volcanism? Science 307:904–907. https://doi.org/10.1126/science.1107260

    Article  CAS  PubMed  Google Scholar 

  • Koppers AAP, Staudigel H, Pringle MS, Wijbrans JR (2003) Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? Geochem Geophys Geosyst 4. https://doi.org/10.1029/2003GC000533

  • Koslow JA, Gowlett-Holmes K, Lowry JK et al (2001) Seamount benthic macrofauna off southern Tasmania: community structure and impacts of trawling. Mar Ecol Progr Ser Mar Ecol Prog Ser 213:111–125. https://doi.org/10.3354/meps213111

    Article  Google Scholar 

  • Krieger KJ, Wing B (2002) Megafauna associated with deepwater (Primnoa spp.) in the Gulf of Alaska. In Watling L, Risk M (eds.) Biology of cold water corals. Hydrobiologia 471: 83–90.

    Google Scholar 

  • Kurman MD, Gomez CE, Georgian SE, Lunden JJ, Cordes EE (2017) Intra-specific variation reveals potential for adaptation to ocean acidification in a cold-water coral from the Gulf of Mexico. Front Mar Sci 4:111. https://doi.org/10.3389/fmars.2017.00111

    Article  Google Scholar 

  • Larsson AI, van Oevelen D, Purser A, Thomsen L (2013) Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Lophelia pertusa. Mar Pollut Bull 70:176–188. https://doi.org/10.1016/j.marpolbul.2013.02.033

    Article  CAS  PubMed  Google Scholar 

  • Le Goff-Vitry MC, Rogers AD, Baglow D (2004) A deep-sea slant on the molecular phylogeny of the Scleractinia. Mol Phylogenet Evol 30:167–177. https://doi.org/10.1016/S1055-7903(03)00162-3

    Article  CAS  PubMed  Google Scholar 

  • Leonard CL, Bidigare RR, Seki MP et al (2001) Interannual mesoscale physical and biological variability in the North Pacific Central Gyre. Prog Oceanogr 49(1–4):227–244

    Article  Google Scholar 

  • LeSueur CP (1821) Description de plusieurs animaux appartement aux polypiers lamellifères de M le Chev. de Lamarck. Mém Mus Hist Nat Paris 6:271–298

    Google Scholar 

  • Levin LA, Mengerink K, Gjerde KM et al (2016) Defining “serious harm” to the marine environment in the context of deep-seabed mining. Mar Policy 74:245–259. https://doi.org/10.1016/j.marpol.2016.09.032

    Article  Google Scholar 

  • Levin LA, Wei CL, Dunn DC et al (2020) Climate change considerations are fundamental to management of deep-sea resource extraction. Glob Chang Biol 26:4664–4678. https://doi.org/10.1111/gcb.15223

    Article  PubMed  PubMed Central  Google Scholar 

  • Linnaeus C (1758) Tomus I. Systems naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Ed decima, reformata Holmiae (Laurentii Salvii) 1:1–824

    Google Scholar 

  • Long DJ, Baco AR (2014) Rapid change with depth in megabenthic structure-forming communities of the Makapu’u deep-sea coral bed. Deep Res Part II Top Stud Oceanogr 99:158–168. https://doi.org/10.1016/j.dsr2.2013.05.032

    Article  Google Scholar 

  • Lunden JJ, McNicholl CG, Sears CR, Morrison CL, Cordes EE (2014) Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front Mar Sci 1:78. https://doi.org/10.3389/fmars.2014.00078

    Article  Google Scholar 

  • Maier C, Bils F, Weinbauer MG et al (2013a) Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century. Biogeosciences 10(8):5671–5680. https://doi.org/10.5194/bg-10-5671-2013

    Article  Google Scholar 

  • Maier C, Schubert A, Berzunza Sànchez MM et al (2013b) End of the century pCO2 levels do not impact calcification in mediterranean cold-water corals. PLoS One 8(4). https://doi.org/10.1371/journal.pone.0062655

  • Maier C, Popp P, Sollfrank N et al (2016) Effects of elevated pCO2 and feeding on net calcification and energy budget of the Mediterranean cold-water coral Madrepora oculata. J Exp Biol 219:3208–3217. https://doi.org/10.1242/jeb.127159

    Article  PubMed  Google Scholar 

  • Maragos J, Miller J, Gove J et al (2008) US coral reefs in the Line and Phoenix Islands, Central Pacific Ocean: history, geology, oceanography, and biology. In: Coral reefs of the USA. Springer, Dordrecht, pp 595–641

    Chapter  Google Scholar 

  • Marschal C, Garrabou J, Harmelin JG, Pichon M (2004) A new method for measuring growth and age in the precious red coral Corallium rubrum (L.). Coral Reefs 23:423–432. https://doi.org/10.1007/s00338-004-0398-6

    Article  Google Scholar 

  • Matias MG, Underwood AJ, Hochuli DF et al (2011) Habitat identity influences species–area relationships in heterogeneous habitats. Mar Ecol Prog Ser 437:135–145

    Article  Google Scholar 

  • Matsuyama M, Ohta S, Hibiya T, Yamada H (1993) Strong tidal currents observed near the bottom in the Suruga Trough, central Japan. J Oceanogr 49:683–696. https://doi.org/10.1007/BF02276752

    Article  Google Scholar 

  • McPhaden MJ, Zhang D (2004) Pacific Ocean circulation rebounds. Geophys Res Lett 31(18)

    Google Scholar 

  • Mejía-Mercado BE, Mundy B, Baco AR (2019) Variation in the structure of the deep-sea fish assemblages on Necker Island, Northwestern Hawaiian Islands. Deep Sea Res Part I Oceanogr Res Pap 152:103086

    Article  Google Scholar 

  • Merrifield MA, Holloway PE (2002) Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J Geophys Res Ocean 107:5–1. https://doi.org/10.1029/2001jc000996

    Article  Google Scholar 

  • Merrifield MA, Holloway PE, Johnston TMS (2001) The generation of internal tides at the Hawaiian Ridge. Geophys Res Lett 28:559–562. https://doi.org/10.1029/2000GL011749

    Article  Google Scholar 

  • Miller KJ, Gunasekera RM (2017) A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal. Sci Rep 7:1–14. https://doi.org/10.1038/srep46103

    Article  CAS  Google Scholar 

  • Miller KJ, Rowden AA, Williams A, Häussermann V (2011) Out of their depth? isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change. PLoS One 6. https://doi.org/10.1371/journal.pone.0019004

  • Miller KA, Thompson KF, Johnston P, Santillo D (2018) An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps. Front Mar Sci 4. https://doi.org/10.3389/fmars.2017.00418

  • Miyamoto M, Kiyota M, Hayashibara T et al (2017) Megafaunal composition of cold-water corals and other deep-sea benthos in the southern Emperor Seamounts area, North Pacific Ocean. Galaxea J Coral Reef Stud 19:19–30. https://doi.org/10.3755/galaxea.19.1_19

    Article  Google Scholar 

  • Mohn C, Rengstorf A, White M et al (2014) Linking benthic hydrodynamics and cold-water coral occurrences: a high-resolution model study at three cold-water coral provinces in the NE Atlantic. Prog Oceanogr 122:92–104. https://doi.org/10.1016/j.pocean.2013.12.003

    Article  Google Scholar 

  • Mora C, Wei CL, Rollo A et al (2013) Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol 11(10). https://doi.org/10.1371/journal.pbio.1001682

  • Morato T, Watson R, Pitcher TJ, Pauly D (2006) Fishing down the deep. Fish Fish 7:24–34. https://doi.org/10.1111/j.1467-2979.2006.00205.x

    Article  Google Scholar 

  • Morato T, González-Irusta JM, Dominguez-Carrió C et al (2020) Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Glob Chang Biol 26(4):2181–2202. https://doi.org/10.1111/gcb.14996

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan LE, Etnoyer P, Scholz AJ et al (2005) Conservation and management implications of deep-sea coral and fishing effort distributions in the Northeast Pacific Ocean. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 1171–1187

    Google Scholar 

  • Morgan NB, Cairns S, Reiswig H, Baco AR (2015) Benthic megafaunal community structure of cobalt-rich manganese crusts on Necker Ridge. Deep Res I Oceanogr Res Pap 104. https://doi.org/10.1016/j.dsr.2015.07.003

  • Morgan NB, Goode S, Roark EB, Baco AR (2019) Fine scale assemblage structure of benthic invertebrate megafauna on the North Pacific Seamount Mokumanamana. Front Mar Sci 6. https://doi.org/10.3389/fmars.2019.00715

  • Mortensen PB, Hovland M, Brattegard T et al (1995) Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 641N on the Norwegian shelf: structure and associated megafauna. Sarsia 80:145–158

    Article  Google Scholar 

  • Mortensen PB, Rapp HT, Båmstedt U (1998) Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L) (Anthozoa, Scleractinia): Implications for determination of linear extension rate. Sarsia 83(5):433–446

    Article  Google Scholar 

  • Mortensen PB, Hovland T, Fossa JH, Furevik DM (2001) Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J Mar Biolog Assoc UK 81(4):581–597

    Article  Google Scholar 

  • Moseley HN (1881) Report on certain Hydroid, Alcyonarian and Madreporarian Corals procured during the voyage of HMS Challenger, vol 2

    Google Scholar 

  • Mosher CV, Watling L (2009) Partners for life: a brittle star and its octocoral host. Mar Ecol Progr Ser 397:81–88. https://doi.org/10.3354/meps08113

    Article  Google Scholar 

  • Movilla J, Gori A, Calvo E et al (2014) Resistance of two mediterranean cold-water coral species to low-pH conditions. Water 6(1):59–67. https://doi.org/10.3390/w6010059

    Article  Google Scholar 

  • Mughal M (2012) Eguchipsammia fistula microsatellite development and population analysis. King Abdullah University of Science and Technology

    Google Scholar 

  • Müller RD, Roest WR, Royer JY et al (1997) Digital isochrons of the world’s ocean floor. J Geophys Res Solid Earth 102(B2):3211–3214

    Article  Google Scholar 

  • Mullineaux LS, Mills SW (1997) A test of the larval retention hypothesis in seamount-generated flows. Deep Sea Res Part I Oceanogr Res Pap 44:745–770

    Article  Google Scholar 

  • Mullins HT, Newton CR, Heath K, Van Buren HM (1981) Modern deep-water coral mounds north of Little Bahama Bank; criteria for recognition of deep-water coral bioherms in the rock record. J Sediment Res 51(3):999–1013

    Google Scholar 

  • Musgrave RC, Pinkel R, MacKinnon JA et al (2016) Stratified tidal flow over a tall ridge above and below Mullineaux LS, Mills SW (1997) A test of the turning latitude. J Fluid Mech 793:933–957. https://doi.org/10.1017/jfm.2016.150

    Article  CAS  Google Scholar 

  • Nakamura H, Kazmin AS (2003) Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. J. Geophys Res 108(C3):3078

    Article  Google Scholar 

  • National Museum of Natural History (NMNH), Smithsonian Institution, 10th and Constitution Ave. N.W., Washington, DC 20560-0193 (https://collections.nmnh.si.edu/search/) Accessed October 5, 2020.

  • Naumann MS, Orejas C, Wild C, Ferrier-Pagès C (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Exp Biol 214:3570–3576. https://doi.org/10.1242/jeb.061390

    Article  CAS  PubMed  Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C (2014) Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep Sea Res Part II Top Stud Oceanogr 99:36–41

    Article  CAS  Google Scholar 

  • Naumann MS, Tolosa I, Taviani M et al (2015) Trophic ecology of two cold-water coral species from the Mediterranean Sea revealed by lipid biomarkers and compound-specific isotope analyses. Coral Reefs 34:1165–1175. https://doi.org/10.1007/s00338-015-1325-8

    Article  Google Scholar 

  • Neumann AC, Kofoed JW, Keller GH (1977) Lithoherms in the straits of Florida. Geology 5(1):4–10

    Article  Google Scholar 

  • NOAA Office of Ocean Exploration and Research Benthic Deepwater Animal Identification Guide. Available from http://oceanexplorer.noaa.gov/okeanos/animal_guide/animal_guide.html. Accessed October 5, 2020

  • O’Hara TD, Rowden AA, Williams A (2008) Cold-water coral habitats on seamounts: Do they have a specialist fauna? Divers Distrib 14:925–934. https://doi.org/10.1111/j.1472-4642.2008.00495.x

    Article  Google Scholar 

  • Obura D, Mangubhai S (2011) Coral mortality associated with thermal fluctuations in the Phoenix Islands, 2002–2005. Coral Reefs 30:607–619. https://doi.org/10.1007/s00338-011-0741-7

    Article  Google Scholar 

  • Obura D, Stone G, Mangubhai S, Bailey S, Yoshinaga H, Barrel R (2011) Baseline marine biological surveys of the Phoenix Islands, July 2000. Atoll Res Bull 589:1–62. https://doi.org/10.5479/si.00775630.589.1

    Article  Google Scholar 

  • Orejas C, Ferrier-Pagès C, Reynaud S et al (2011) Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar Ecol Prog Ser 429:57–65. https://doi.org/10.3354/meps09104

    Article  Google Scholar 

  • Pante E, France SC, Gey D, Cruaud C, Samadi S (2015) An inter-ocean comparison of coral endemism on seamounts: the case of Chrysogorgia. J Biogeogr 42:1907–1918. https://doi.org/10.1111/jbi.12564

    Article  Google Scholar 

  • Parrish FA (2006) Precious corals and subphotic fish assemblages. Atoll Res Bull

    Google Scholar 

  • Parrish FA (2007) Density and habitat of three deep-sea corals in the lower Hawaiian chain. Bull Mar Sci 81:185–194

    Google Scholar 

  • Parrish FA (2015) Settlement, colonization, and succession patterns of gold coral Kulamanamana haumeaae in Hawaiian deep coral assemblages. Mar Ecol Prog Ser 533:135–147. https://doi.org/10.3354/meps11390

    Article  Google Scholar 

  • Parrish FA, Baco AR (2007) State of deep coral ecosystems in the US Pacific Islands region: Hawaii and the US Pacific Territories. In: Lumsden SE, Hourigan TF, Bruckner AW, Dorr G (eds). National Oceanic and Atmospheric Administration, pp 115–194

    Google Scholar 

  • Parrish FA, Oliver TA (2020) Comparative observations of current flow, tidal spectra, and scattering strength in and around Hawaiian Deep-Sea Coral Patches. Front Mar Sci 7:1–16. https://doi.org/10.3389/fmars.2020.00310

    Article  Google Scholar 

  • Parrish FA, Roark EB (2009) Growth validation of gold coral Gerardia sp. in the Hawaiian Archipelago. Mar Ecol Progr Ser 397:163–172

    Article  Google Scholar 

  • Parrish FA, Baco AR, Kelley C, Reiswig H (2015) State of deep-sea coral and sponge ecosystems of the U.S. Pacific Islands Region. In: Hourigan TF, Etnoyer PJ, Cairns SD (eds) The state of deep-sea coral and sponge ecosystems of the United States. NOAA Technical Memorandum NMFS-OHC-4, Silver Springs, MD, (Chapter 7), pp 1–38

    Google Scholar 

  • Parrish FA, Baco-Taylor A, Kelley C, et al (2017) Deep-Sea Coral Taxa in the Hawaiian Archipelago and other US Pacific Islands: depth and geographical distribution.

    Google Scholar 

  • Parrish FA, Hourigan TF, Baco-Taylor AR, Kelley CD, Cairns SD (2022) List of Deep-Sea Coral Taxa in the Hawaiian Archipelago and Johnston Atoll: Depth and Geographic Distribution (v. 2021). Online Supplement to The state of deep-sea coral and sponge ecosystems of the United States. https://doi.org/10.25923/wj31-g055

  • Petersen S, Krätschell A, Augustin N et al (2016) News from the seabed – geological characteristics and resource potential of deep-sea mineral resources. Mar Pol 70:175–187. https://doi.org/10.1016/j.marpol.2016.03.012

    Article  Google Scholar 

  • Petruncio E, Weinnig A, Peters C, et al (2020) Pacific Remote Islands Marine National Monument: exploring the Howland and Baker Island unit and Johnston Atoll unit. In: New frontiers in ocean exploration: the E/V nautilus, NOAA Ship Okeanos Explorer, and R/V Falkor 2019 Field season, Raineault N, Flanders J (eds) Oceanography (33)1:46–47. https://doi.org/10.5670/oceanog.2020.supplement.01

  • Pires DO, Silva JC, Bastos ND (2014) Reproduction of deep-sea reef-building corals from the southwestern Atlantic. Deep Res Part II Top Stud Oceanogr 99:51–63. https://doi.org/10.1016/j.dsr2.2013.07.008

    Article  Google Scholar 

  • Polovina JJ (2005) Climate variation, regime shifts, and implications for sustainable fisheries. Bull Mar Sci 76:233–2144

    Google Scholar 

  • Polovina JJ, Haight WR (1999) Climate variation, ecosystem dynamics, and fisheries management in the NWHI. Ecosystem approaches for fisheries management. Alaska Sea Grant College Program AK-SG-99-01.

    Google Scholar 

  • Polovina JJ, Howell E, Kobayashi DR et al (2001) The Transition Zone Chlorophyll Front, a dynamic global feature defining migration and forage habitat for marine resources. Prog Oceanogr 49(1–4):469–483

    Article  Google Scholar 

  • Pourtalès LD (1867) Contributions to the fauna of the Gulf Stream at great depths. Bull Mus Comp Zool 1(6):1e

    Google Scholar 

  • Pourtalès LD (1878) Reports on the results of the dredgings by the “Blake”. Crinoids and corals. Bull Harv Univ Mus Comp Zool 5:197–212

    Google Scholar 

  • Putts MR, Parrish FA, Trusdell FA, Kahng SE (2019) Structure and development of Hawaiian deep-water coral communities on Mauna Loa lava flows. Mar Ecol Prog Ser 630:69–82. https://doi.org/10.3354/meps13106

    Article  Google Scholar 

  • Pyle RL, Boland R, Bolick H et al (2016) A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4. https://doi.org/10.7717/peerj.2475

  • Raddatz J, Titschack J, Frank N et al (2020) Solenosmilia variabilis-bearing cold-water coral mounds off Brazil. Coral Reefs 39(1):69–83

    Article  Google Scholar 

  • Reed JK (1981) In situ growth rates of the scleractinian coral Oculina varicosa occurring with zooxanthellae on 6-m reefs and without on 80-m banks. In Proceedings of the fourth international coral reef symposium, vol 2, pp 201–206

    Google Scholar 

  • Reed JK (2002) Comparison of deep-water coral reefs and lithoherms off southeastern USA. Hydrobiologia 471(1–3):57–69

    Article  Google Scholar 

  • Reed JK (2004) Deep-water coral reefs of Florida, Georgia and South Carolina: a summary of the distribution, habitat, and associated fauna. Report prepared for the South Atlantic Fishery Management Council. Appendix A, Comprehensive ecosystem-based amendment 1

    Google Scholar 

  • Reed JK, Weaver DC, Pomponi SA (2006) Habitat and fauna of deep-water Lophelia pertusa coral reefs off the southeastern US: Blake Plateau, Straits of Florida, and Gulf of Mexico. Bull Mar Sci 78(2):343–375

    Google Scholar 

  • Rix L, De Goeij JM, Mueller CE et al (2016) Coral mucus fuels the sponge loop in warm-and cold-water coral reef ecosystems. Sci Rep 6:1–11. https://doi.org/10.1038/srep18715

    Article  CAS  Google Scholar 

  • Roark EB, Guilderson TP, Flood-Page S et al (2005) Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska. Geophys Res Lett 32:L04606. https://doi.org/10.1029/2004GL021919

    Article  CAS  Google Scholar 

  • Roark EB, Guilderson TP, Dunbar RB, Ingram BL (2006) Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Mar Ecol Ser 327:1–37. https://doi.org/10.3354/meps327001

    Article  CAS  Google Scholar 

  • Roark EB, Guilderson TP, Dunbar RB et al (2009) Extreme longevity in proteinaceous deep-sea corals. Proc Natl Acad Sci U S A 106:5204–5208. https://doi.org/10.1073/pnas.0810875106

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts S, Hirshfield M (2004) Deep-sea corals: out of sight, but no longer out of mind. Front Ecol Environ 2(3):123–130

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312(5773):543–547. https://doi.org/10.1126/science.1119861

    Article  CAS  PubMed  Google Scholar 

  • Roberts JM, Wheeler A, Freiwald A, Cairns S (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press

    Book  Google Scholar 

  • Roberts JM, Murray F, Anagnostou E et al (2016) Cold-water corals in an era of rapid global change: Are these the deep ocean’s most vulnerable ecosystems? In: Goffredo S, Dubinsky Z (eds) The Cnidaria, past, present and future. Springer, Cham, pp 593–606

    Chapter  Google Scholar 

  • Rogers AD (1999) The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. Int Rev Hydrobiol 84:315–406. https://doi.org/10.1002/iroh.199900032

    Article  Google Scholar 

  • Rogers AD (2018) The biology of seamounts: 25 years on. Adv Mar Biol 79:137–224. https://doi.org/10.1016/bs.amb.2018.06.001

    Article  PubMed  Google Scholar 

  • Rogers AD, Baco A, Griffiths H, et al (2007) Corals on seamounts. In: Pitcher TJ, Morato T, Hart PJB, et al. (eds). Blackwell Publishing, Oxford, pp 141–169

    Google Scholar 

  • Rooney J, Donham E, Montgomery A et al (2010) Mesophotic coral ecosystems in the Hawaiian archipelago. Coral Reefs 29:361–367. https://doi.org/10.1007/s00338-010-0596-3

    Article  Google Scholar 

  • Ross SW, Quattrini AM (2007) The fish fauna associated with deep coral banks off the southeastern United States. Deep Sea Res Part I Oceanogr Res Pap 54(6):975–1007. https://doi.org/10.1016/j.dsr.2007.03.010

    Article  Google Scholar 

  • Rotjan R, Jamieson R, Carr B et al (2014) Establishment, management, and maintenance of the phoenix islands protected area. Adv Mar Biol 69:289–324. https://doi.org/10.1016/B978-0-12-800214-8.00008-6

    Article  PubMed  Google Scholar 

  • Rowden AA, Anderson OF, Georgian SE et al (2017) High-resolution habitat suitability models for the conservation and management of vulnerable marine ecosystems on the Louisville Seamount Chain, South Pacific Ocean. Front Mar Sci 4. https://doi.org/10.3389/fmars.2017.00335

  • Rudnick DL, Boyd TJ, Brainard RE et al (2003) From tides to mixing along the Hawaiian Ridge. Science 301:355–357. https://doi.org/10.1126/science.1085837

    Article  CAS  PubMed  Google Scholar 

  • Sars M (1865) Om de I Norge forekommende fossile dyrelevniger fra Quartaerperioden. Christiania: University program første halvaar 1864, pp 1–134

    Google Scholar 

  • Schlacher TA, Baco AR, Rowden AA et al (2014) Seamount benthos in a cobalt-rich crust region of the central Pacific: conservation challenges for future seabed mining. Divers Distrib 20:491–502. https://doi.org/10.1111/ddi.12142

    Article  Google Scholar 

  • Schlining K, von Thun S, Kuhnz L et al (2013) Debris in the deep: using a 22-year video annotation database to survey marine litter in Monterey Canyon, central California, USA. Deep Sea Res Part I Oceanogr Res Pap 79:96–105. https://doi.org/10.1016/j.dsr.2013.05.006

    Article  Google Scholar 

  • Schmitz Jr WJ (1996) On the world ocean circulation: volume 2 The Pacific and Indian Oceans: A global update (No. WHOI-96-08). Woods Hole Oceanographic Institution MA

    Google Scholar 

  • Schott FA, Mccreary JP, Johnson GC (2004) Shallow overturning circulations of the tropical-subtropical oceans. Earth climate: The ocean–atmosphere interaction. Geophys Monogr 147:261–304. https://doi.org/10.1029/147GM15

    Article  Google Scholar 

  • Schröder-Ritzrau A, Freiwald A, Mangini A (2005) U/Th-dating of deep-water corals from the eastern North Atlantic and the western Mediterranean Sea. In: Friewald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 157–172

    Chapter  Google Scholar 

  • Seki MP, Lumpkin R, Flament P (2002) Hawaii cyclonic eddies and blue marlin catches: the case study of the 1995 Hawaiian International Billfish tournament. J Oceanogr 58:739–745. https://doi.org/10.1023/A:1022854609312

    Article  Google Scholar 

  • Spearman J, Taylor J, Crossouard N et al (2020) Measurement and modelling of deep sea sediment plumes and implications for deep sea mining. Sci Rep 10(1):1–14

    Article  Google Scholar 

  • Squires DF (1964) Fossil coral thickets in Wairarapa, New Zealand. J Paleontol 38(5):904–915

    Google Scholar 

  • Stanley GD (1979) Paleoecology, structure, and distribution of coral buildups in western North America. U Kansas Paleo Contrib 65:1–68

    Google Scholar 

  • Stanley GD, Cairns SD (1988) Constuctional azooxanthellate coral communities: an overview with implications for the fossil record. Palaios 3:233–242

    Article  Google Scholar 

  • Sweetman AK, Thurber AR, Smith CR, et al (2017) Major impacts of climate change on deep-sea benthic ecosystems. Elem Sci Anthr 5:Art. No. 4. doi:https://doi.org/10.1525/elementa.203

  • Talley LD (1993) Distribution and Formation of North Pacific Intermediate Water. J Phys Oceanogr 23:517–537. https://doi.org/10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2

    Article  Google Scholar 

  • Tchernia P (1980) Descriptive regional oceanography. Pergamon Press

    Google Scholar 

  • Teichert C (1958) Cold- and deep-water coral banks. Bul Am Petrol Geol 42:1064–1082

    Google Scholar 

  • Thresher RE, Tilbrook BD, Fallon S et al (2011) Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Mar Ecol Ser 442:87–99. https://doi.org/10.3354/meps09400

    Article  Google Scholar 

  • Thurman HV (1981) Introductory oceanography, 3rd edn. Charles E. Merrill Publishing Company

    Google Scholar 

  • Tissot BN, Yoklavich MM, Love MS et al (2006) Benthic invertebrates that form habitat on deep banks off southern California, with special reference to deep sea coral. Fish Bull 104:167–181

    Google Scholar 

  • Tittensor DP, Baco-Taylor AR, Brewin P, Clark MR, Consalvey M, Hall-Spencer J, Rowden AA, Schlacher T, Stocks K, Rogers AD (2009) Predicting global habitat suitability for stony corals on seamounts. J Biogeogr 36:1111–1128

    Article  Google Scholar 

  • Tittensor DP, Baco AR, Hall-Spencer JM et al (2010) Seamounts as refugia from ocean acidification for cold-water stony corals. Mar Ecol 31:212–225. https://doi.org/10.1111/j.1439-0485.2010.00393.x

    Article  Google Scholar 

  • Tracey D, Rowden A, Mackay K, Compton T (2011) Habitat-forming cold-water corals show affinity for seamounts in the New Zealand region. Mar Ecol Prog Ser 430:1–22. https://doi.org/10.3354/meps09164

    Article  Google Scholar 

  • UNGA (2006) Resolution 61/105 Sustainable fisheries, including through the 1995 Agreement for the Implementation of the Provisions of the United Nations Convention on the Law of the Sea of 10 December 1982 relating to the Conservation and Mangement of Straddling Fish Stocks and Highly Migratory Fish Stocks, and related instruments. UNGA A/RES/61/105. Available from: https://www.un.org/en/ga/search/view_doc.asp?symbol=A/RES/61/105&Lang=E

  • University of Hawai’i Undersea Research Laboratory (HURL) Deep-sea Animal Identification Guide. Available from http://www.soest.hawaii.edu/HURL/HURLarchive/guide.php. Accessed July 2020

  • Van Oevelen D, Duineveld G, Lavaleye M et al (2009) The cold-water coral community as a hot spot for carbon cycling on continental margins: a food-web analysis from rockall bank (northeast atlantic). Limnol Oceanogr 54:1829–1844. https://doi.org/10.4319/lo.2009.54.6.1829

    Article  Google Scholar 

  • Vargas-Ángel B, Looney EE, Vetter OJ, Coccagna EF (2011) Severe, widespread El Niño-associated coral bleaching in the US Phoenix Islands. Bull Mar Sci 87:623–638. https://doi.org/10.5343/bms.2010.1095

    Article  Google Scholar 

  • Vaughan TW (1907) Recent Madreporarians of the Hawaiian Islands and Laysan. Bull US Nat Mus 59:427

    Google Scholar 

  • Venegas RM, Oliver T, Liu G et al (2019) The rarity of depth refugia from coral bleaching heat stress in the Western and Central Pacific Islands. Sci Rep 9:19710. https://doi.org/10.1038/s41598-019-56232-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Victorero L, Watling L, Palomares MLD, Nouvian C (2018) Out of sight, but within reach: a global history of bottom-trawled deep-sea fisheries from > 400 m depth. Front Mar Sci 5:98. https://doi.org/10.3389/fmars.2018.00098

    Article  Google Scholar 

  • Waller RG (2005) Deep-water Scleractinia (Cnidaria: Anthozoa): current knowledge of reproductive processes. In: Friewald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 691–700

    Chapter  Google Scholar 

  • Waller RG, Tyler PA (2005) The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs 24:514–522. https://doi.org/10.1007/s00338-005-0501-7

    Article  Google Scholar 

  • Waller RG, Tyler PA, Gage JD (2005) Sexual reproduction in three hermaphroditic deep-sea Caryophyllia species (Anthozoa: Scleractinia) from the NE Atlantic Ocean. Coral Reefs 24:594–602. https://doi.org/10.1007/s00338-005-0031-3

    Article  Google Scholar 

  • Watling L, France SC, Pante E, Simpson A (2011) Biology of deep-water octocorals. Adv Mar Biol. 60:41–122. https://doi.org/10.1016/B978-0-12-385529-9.00002-0

    Article  PubMed  Google Scholar 

  • Watling L, Guinotte J, Clark MR, Smith CR (2013) A proposed biogeography of the deep ocean floor. Prog Oceanogr 111:91–112. https://doi.org/10.1016/j.pocean.2012.11.003

    Article  Google Scholar 

  • Wells JW (1954) Recent corals of the Marshall Islands: Bikini and nearby atolls, Part 2, Oceanography. US Geol Surv Prof Pap 260(I):382–486

    Google Scholar 

  • Wishner K, Levin L, Gowing M, Mullineaux L (1990) Involvement of the oxygen minimum in benthic zonation on a deep seamount. Nature 346:57–59

    Article  Google Scholar 

  • Yesson C, Taylor ML, Tittensor DP et al (2012) Global habitat suitability of cold-water octocorals. J Biogeogr 39:1278–1292. https://doi.org/10.1111/j.1365-2699.2011.02681.x

    Article  Google Scholar 

  • Yesson C, Bedford F, Rogers AD, Taylor ML (2017) The global distribution of deep-water Antipatharia habitat. Deep Sea Res Part II Top Stud Oceanogr 145:79–86. https://doi.org/10.1016/j.dsr2.2015.12.004

    Article  CAS  Google Scholar 

  • Yesson C, Letessier TB, Nimmo-Smith A, Hosegood P, Brierley AS, Hardouin M, Proud R (2021) Improved bathymetry leads to >4000 new seamount predictions in the global ocean – but beware of phantom seamounts! UCL Open: Environment 2021(4):03. Available from: https://doi.org/10.14324/111.444/ucloe.000030

  • Zeng C, Rowden AA, Clark MR, Gardner JPA (2017) Population genetic structure and connectivity of deep-sea stony corals (Order Scleractinia) in the New Zealand region: implications for the conservation and management of vulnerable marine ecosystems. Evol Appl 10:1040–1054. https://doi.org/10.1111/eva.12509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R-H, Levitus S (1997) Structure and cycle of decadal variability of upper-ocean temperature in the North Pacific. J Clim 10:710–727. https://doi.org/10.1175/1520-0442(1997)010<0710:SACODV>2.0.CO;2

    Article  Google Scholar 

  • Zhang R-H, Rothstein LM, Busalacchi AJ (1998) Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature 391:879–883. https://doi.org/10.1038/36081

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the editors for the invitation to participate in this chapter. Our thanks to Chris Kelley who reviewed the Hawaii Undersea Research Laboratory (HURL) database and provided unpublished HURL data records to help determine potential additional location of scleractinian reefs. We also thank Hannah Barkley and Ari Halperin who provided Figs. 10.1 and 10.2. Unpublished data on fish associations were collected through NSF grants OCE-1334652 to ARB and OCE-1334675 to EBR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy R. Baco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baco, A.R. et al. (2023). Deep-Sea Corals of the North and Central Pacific Seamounts. In: Cordes, E., Mienis, F. (eds) Cold-Water Coral Reefs of the World. Coral Reefs of the World, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-031-40897-7_10

Download citation

Publish with us

Policies and ethics