Skip to main content

Mixing Plant Species in Cropping Systems: Concepts, Tools and Models: A Review

  • Chapter
  • First Online:
Sustainable Agriculture

Abstract

The evolution of natural ecosystems is controled by a high level of biodiversity, in sharp contrast, intensive agricultural systems involve monocultures associated with high input of chemical fertilisers and pesticides. Intensive agricultural systems have clearly negative impacts on soil and water quality and on biodiversity conservation. Alternatively, cropping systems based on carefully designed species mixtures reveal many potential advantages under various conditions, both in temperate and tropical agriculture. This article reviews those potential advantages by addressing the reasons for mixing plant species; the concepts and tools required for understanding and designing cropping systems with mixed species; and the ways of simulating multispecies cropping systems with models. Multispecies systems are diverse and may include annual and perennial crops on a gradient of complexity from 2 to n species. A literature survey shows potential advantages such as (1) higher overall productivity, (2) better control of pests and diseases, (3) enhanced ecological services and (4) greater economic profitability. Agronomic and ecological conceptual frameworks are examined for a clearer understanding of cropping systems, including the concepts of competition and facilitation, above- and belowground interactions and the types of biological interactions between species that enable better pest management in the system. After a review of existing models, future directions in modelling plant mixtures are proposed. We conclude on the need to enhance agricultural research on these multispecies systems, combining both agronomic and ecological concepts and tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams P.A. (1995) Monotonic or unimodal diversity – productivity gradient: what does competition theory predict? Ecology 76, 2019–2027.

    Google Scholar 

  • Adetiloye P.O., Adekunle A.A. (1989) Concept of monetary equivalent ratio and its usefulness in the evaluation of intercropping advantages. Trop. Agr. 66, 337–340.

    Google Scholar 

  • Adiku S.G.K., Rose C.W., Braddock R.D., Ozier-Lafontaine H. (2000) On the simulation of the root water extraction: examination of a minimum energy hypothesis. Soil Sci. 165, 226–236.

    CAS  Google Scholar 

  • Aerts R. (1999) Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J. Exp. Bot. 50, 29–37.

    CAS  Google Scholar 

  • Altieri M.A. (1999) The ecological role of biodiversity in agroecosystems. Agr. Ecosyst. Environ. 74, 19–31.

    Google Scholar 

  • Altieri M.A. (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agr. Ecosyst. Environ. 93, 1–24.

    Google Scholar 

  • Andow D.A. (1991) Yield loss to arthropods in vegetationally diverse ecosystems. Environ. Entomol. 20, 1228–1235.

    Google Scholar 

  • Andow D.A., Nicholson A.G., Wien H.C., Wilson H.R. (1986) Insect populations on cabbage grown with living mulches. Environ. Entomol. 15, 293–299.

    Google Scholar 

  • Anil L., Park J., Phipps R.H., Miller F.A. (1998) Temperate intercropping of cereals for forage: a review of the potential for growth and utilization with particular reference to the UK. Grass Forage Sci. 53, 301–317.

    Google Scholar 

  • Aubry C., Papy F., Capillon A. (1998) Modelling decision-making process for annual crop management. Agr. Syst. 56, 45–65.

    Google Scholar 

  • Bartelink H.H. (2000) A growth model for mixed forest stands. Forest Ecol. Manag. 134, 29–43.

    Google Scholar 

  • Berry D. (2001) Rational chemical control and cultural techniques. In: Marriaud D. (Ed.) Diseases of tropical tree crops. Montpellier, Cirad, pp. 152–192.

    Google Scholar 

  • Bertness B., Callaway R. (1994) Positive interactions in communities. Trends Ecol. Evol. 9, 191–193.

    PubMed  CAS  Google Scholar 

  • Bolliger A., Magid J., Amado J.C.T., Skora Neto F., Ribeir M., Calegari A., Ralisch R., de Neergaard A., Donald L.S. (2006) Taking Stock of the Brazilian ‘Zero Till Revolution’: A Review of Landmark Research and Farmers’ Practice. Adv. Agr. 91, 47–110.

    Google Scholar 

  • Brisson N., Bussiere F., Ozier-Lafontaine H., Tournebize R., Sinoquet H. (2004) Adaptation of the crop model STICS to intercropping, Theoretical basis and parameterisation. Agronomie 24, 409–421.

    Google Scholar 

  • Bruno J.F., Stachowicz J.J., Bertness M.D. (2003) Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18–3, 119–125.

    Google Scholar 

  • Brussaard L., de Ruiter P.C., Brown G.G. (2007) Soil biodiversity for agricultural sustainability. Agr. Ecosyst. Environ. 121, 233–244.

    Google Scholar 

  • Bulson H.A.J., Snaydon R.W., Stopes C.E. (1997) Effects of plant density on intercropped wheat and field beans in an organic farming system. J. Agr. Sci. 128, 59–71.

    Google Scholar 

  • Caldwell R.M. (1995) Simulation models for intercropping systems. In: Sinoquet H., Cruz P. (Eds.), Ecophysiology of Tropical Intercropping. INRA, Versailles, pp. 353–368.

    Google Scholar 

  • Caldwell M.M., Richards J.H. (1986) Competing root systems: morphology and models of absorption. In: Givnish T. (Ed.). On the Economy of Plant Form and Function, Cambridge University Press, pp. 251–273.

    Google Scholar 

  • Caldwell R.M., Hansen J.W. (1993) Simulation of multiple cropping systems with CropSys. In: Penning de Vries F.W.T. (Ed.), Systems Approaches for Agricultural Development. pp. 397–412.

    Google Scholar 

  • Callaway R.M., Walker L.R. (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78, 1958–1965.

    Google Scholar 

  • Callaway R.M., Pennings S.C., Richards C.L. (2003) Phenotypic plasticity and interactions among plants. Ecology 84, 1115–1128.

    Google Scholar 

  • Carberry P.S., Adiku S.G.K., McCown R.L., Keating B.A. (1996) Application of the APSIM cropping systems model to intercropping systems. In: Ito O., Johansen C., Adu-Gyamfi K., Katayama K., Kumar-Rao J.V.D.K., Rego T.J. (Eds.), Dynamics of roots and nitrogen in cropping systems of the semi-arid tropics. Jap. Int. Res. Centre Agric. Sci. pp. 637–648.

    Google Scholar 

  • Coates K.D., Canham C.D., Beaudet M., Sachs D.L., Messier C. (2003) Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests. Forest Ecol. Manag. 186, 297–310.

    Google Scholar 

  • Casper B.B., Jackson R.B. (1997) Plant competition underground. Annu. Rev. Ecol. Syst. 28, 545–570.

    Google Scholar 

  • Clements F.E., Weaver J.E., Hanson H.C. (1926) Plant Competition: An Analysis of the Development of Vegetation. Carnegie Institute, Washington.

    Google Scholar 

  • Coates K.D., Canham C.D., Beaudet M., Sachs D.L., Messier C. (2003) Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests. Forest Ecol. Manag. 186, 297–310.

    Google Scholar 

  • Coligny F.D., Ancelin P., Cornu G., Courbaud B., Dreyfus P., Goreaud F., Gourlet-Fleury S., Meredieu C., Saint-Andre L. (2003) CAPSIS: computer-aided projection for strategies in silviculture: advantages of a shared forest-modelling platform. In: Modelling forest systems. Workshop on the interface between reality, modelling and the parameter estimation processes. Sesimbra, Portugal, 2–5 June 2002, pp. 319–323.

    Google Scholar 

  • Corre-Hellou G. (2005) Acquisition de l’azote dans des associations pois-orge (Pisum sativum L. – Hordeum vulgare L.) en relation avec le fonctionnement du peuplement. Thèse de doctorat en Sciences Agronomiques de l’École Doctorale d’Angers.

    Google Scholar 

  • Corre-Hellou G., Fustec J., Crozat Y. (2006) Interspecific competition for soil N and its interactions with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant Soil 282, 195–208.

    CAS  Google Scholar 

  • Cruz P.A., Sinoquet H. (1994) Competition for light and nitrogen during a regrowth cycle in a tropical forage mixture. Field Crops. Res. 36, 21–30.

    Google Scholar 

  • Dauzat J., Eroy M.N. (1997) Simulating light regime and intercrop yields in coconut based farming systems. Eur. J. Agron. 7, 63–74.

    Google Scholar 

  • Deadman M.L., Soleimani M.J., Nkemka P.N. (1996) Cereal clover bicropping: effects on wheat stem-base and root diseases. Brighton crop protection conference.

    Google Scholar 

  • Deen W., Cousens R., Warringa J., Bastiaans L., Carberry P., Rebel K., Riha S., Murphy C., Benjamin L.R., Cloughley C. (2003) An evaluation of four crop:weed competition models using a common data set. Weed Res. 43, 116–129.

    Google Scholar 

  • Dempster J.P., Coaker T.H. (1974) Diversification of crop ecosystems as a means of controlling pests. In: Jones D.P., Soloman M.E. (Eds.), Biology in pest and disease control. Wiley, New York, pp. 106–114.

    Google Scholar 

  • Donald C.M. (1958) The interaction of competition for light and for nutrients. Aust. J. Agr. Res. 9, 421–435.

    Google Scholar 

  • Donald P. (2004) Biodiversity impacts of some agricultural commodity production systems. Conserv. Biol. 18, 17–38.

    Google Scholar 

  • Doré T., Le Bail M., Martin P., Ney B., Roger-Estrade J. (2006) L’agronomie aujourd’hui. Éditions Quae, ISBN 2-7592-0000-0, 367 p.

    Google Scholar 

  • Doré T., Clermont-Dauphin C., Crozat Y, Jeuffroy M.H., Loyce C., Makowski D., Malézieux E., Meynard J.M., Valantin-Morison M. (2008) Methodological progress in on-farm regional agronomic diagnosis. Agron. Sustain. Dev. 28 dx.doi.org/10.1051/agro:2007031.

    Google Scholar 

  • Doyle C.J. (1997) A review of the use of models of weed control in integrated crop protection. Agr. Ecosyst. Environ. 64, 165–172.

    Google Scholar 

  • Dupraz C. (1998) Adequate design of control treatments in long term agroforestry experiments with multiple objectives. Agroforest. Syst. 43, 35–48.

    Google Scholar 

  • Dupraz C., Vincent G., Lecomte I., Noordwijk M.V. (in preparation) Modelling 3D interactions of trees and crops with the Hi-sAFe model.

    Google Scholar 

  • Dury S., Temple L. (1999) La diversification fruitière des exploitations périurbaines dans la région de Yaoundé (Cameroun). Quelles conséquences pour l’orientation de la recherche-développement? In: Actes du Symposium international ‘Jardin Planétaire 99.’ Savoie Technolac, Prospective 2100, Chambéry, France, pp. 531–535.

    Google Scholar 

  • Egunjobi O.A. (1984) Effects of intercropping maize with grain legumes and fertilizer treatments on populations of Protylenchus penetrans Godfrey (Nematoda) and on the yield of maize (Zea mays L.). Prot. Ecol. 6, 153–167.

    Google Scholar 

  • Eichhorn M., Paris P., Herzog F., Incoll L., Liagre F., Mantzanas K., Mayus M., Moreno G., Papanastasis V., Pilbeam D. (2006) Silvoarable systems in Europe: past, present and future prospects. Agroforest. Syst. 67, 29–50.

    Google Scholar 

  • Erskine P.D., Lamb D., Bristow M., (2006) Tree species diversity and ecosystem fonction: can tropical multi-species plantations generate greater productivity? Forest Ecol. Manag. 233, 205–210.

    Google Scholar 

  • Ewel J.J. (1986) Designing agricultural ecosystems for the humid tropics. Ann. Rev. Ecol. Syst. 17, 245–271.

    Google Scholar 

  • Ewel J.J. (1999) Natural systems as models for the design of sustainable systems of land use. Agroforest. Syst. 45, 1–21.

    Google Scholar 

  • Ewel J.J., Bigelow S.W. (1996) Plant life-forms and tropical ecosystem functioning. Ecol. Stud. 122, 101–126.

    Google Scholar 

  • Follis M.B. (1993) Economic considerations. In: Nair P.K.R. (Ed.), Introduction to Agroforestry. Kluwer, Dordrecht, pp. 385–411.

    Google Scholar 

  • Francis C.A. (1990) Potential of multiple cropping systems. In: Altieri M.A., Hecht S.B. (Eds.), Agroecology and Small Farm Development, Boca Raton, Florida, CRC Press, pp. 137–150.

    Google Scholar 

  • Frank D.A., McNaughton S.J. (1991) Stability increases with diversity in plant communities: empirical evidence from the 1998 Yellowstone drought. Oikos 62, 360–362.

    Google Scholar 

  • Garcia-Barrios L. (2003) Plant-plant interactions in tropical agriculture. In: Vandermeer J. (Ed.), Tropical Agroecosystems. CRC Press, Boca Raton, Florida, pp. 11–58.

    Google Scholar 

  • Garcia-Barrios L., Ong C.K. (2004) Ecological interactions, management lessons and design tools in tropical agroforestry systems. Agroforest. Syst. 61/62, 221–236.

    Google Scholar 

  • Giller K.E., Beare M.H., Lavelle P., Izac M.N., Swift M.J. (1997) Agricultural intensification, soil biodiversity and agroecosystem function. Appl. Soil Ecol. 6, 3–16.

    Google Scholar 

  • Gliesmann S.R. (2001) Agroecosystem sustainability: developing practical strategies. CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Goldberg D.E., Barton A.M. (1992) Patterns and consequences of interspecific competition in natural communities: a review of field experiments with plants. Am. Nat. 139, 771–801.

    Google Scholar 

  • Gooding M.J., Kasyanova E., Ruske R., Hauggaard-Nielsen H., Jensen E.S., Dahlmann C., Von Fragsten P., Dibet A., Corre-Hellou G., Crozat Y., Pristeri A., Romeo M., Monti M., Launay M. (2007) Intercropping with pulses to concentrate nitrogen and sulphur in wheat. J. Agr. Sci. 145, 469–479.

    CAS  Google Scholar 

  • Gosse G., Varlet-Grancher C., Bonhomme R., Allirand J.M., Lemaire G. (1986) Production maximale de matière sèche et rayonnement solaire intercepté par un couvert végétal. Agronomie 6, 47–56.

    Google Scholar 

  • Gourlet-Fleury S., Blanc L., Picard N., Sist P., Dick J., Nasi R., Swaine M.D., Forni E. (2005) Grouping species for predicting mixed tropical forest dynamics: looking for a strategy. Ann. For. Sci. 62, 785–796.

    Google Scholar 

  • Grace B., Tilman D. (1990) Perspectives on plant competition. New York. Academic. 484 p.

    Google Scholar 

  • Gregory P.J., Reddy M.S. (1982) Root growth in an intercrop of pear millet/groundnut. Field Crop. Res. 5, 241–252.

    Google Scholar 

  • Griffon M. (1999) Développement durable et agriculture: la révolution doublement verte. Cah. Agric. 8, 259–267.

    Google Scholar 

  • Grime J.P. (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary strategy. Am. Nat. 111, 1169–1194.

    Google Scholar 

  • Gurr G.M., Wratten S.D., Luna J.M. (2003) Multi-function agricultural biodiversity: pest management and other benefits. Basic Appl. Ecol. 4, 107–116.

    Google Scholar 

  • Hauggaard-Nielsen H., Jensen E. (2005) Facilitative root interactions in intercrops. Plant Soil 274, 237–250.

    CAS  Google Scholar 

  • Hauggaard-Nielsen H., Ambus P., Jensen E.S. (2001) Interspecific competition, N use ans interference with weeds in pea-barley intercropping. Field Crop. Res. 70, 101–109.

    Google Scholar 

  • Hector A., Schmid B., Beierkuhnlein C. (1999) Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127.

    PubMed  CAS  Google Scholar 

  • Hiebsch C.K., McCollum R.E. (1987) Area X Time Equivalency Ratio: a method for evaluating the productivity of intercrops. Agron. J. 79, 15–22.

    Google Scholar 

  • Hobbs R.J., Morton S.R. (1999) Moving from descriptive to predictive ecology. Agroforest. Syst. 45, 43–55.

    Google Scholar 

  • House J.I., Archer S., Breshears D.D., Scholes R.J. (2003) Conundrums in mixed woody-herbaceous plant systems. J. Biogeogr. 30, 1763–1777.

    Google Scholar 

  • Huxley P.A. (1983) Comments on agroforestry classifications with special reference to plant aspects. In: Huwley P.A. (Ed.), Plant research and agroforestry. ICRAF, Nairobi, pp. 161–172.

    Google Scholar 

  • Huth N.I., Carberry P.S., Poulton P.L., Brennan L.E., Keating B.A. (2003) A framework for simulating agroforestry options for the low rainfall areas of Australia using APSIM. Eur. J. Agron. 18, 171–185.

    Google Scholar 

  • Jackson W. (2002) Natural systems agriculture: a truly radical alternative. Agr. Ecosyst. Environ. 88, 111–117.

    Google Scholar 

  • Jing Quan Yu (1999) Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a tomato-chinese chive (Allium tuberosum) intercropping system. J. Chem. Ecol. 25, 11.

    Google Scholar 

  • Jones G.A., Sieving K.E. (2006) Intercropping sunflower in organic vegetables to augment bird predators of arthropods. Agr. Ecosyst. Environ. 6, 171–177.

    Google Scholar 

  • Keating B.A., Carberry P.S. (1993) Resource capture and use in intercropping – solar radiation. Field Crop. Res. 34, 273–301.

    Google Scholar 

  • Keddy (1989) Competition, Chapman and Hall, New York.

    Google Scholar 

  • Kelty M.J. (2006) The role of species mixtures in plantation forestry. Forest Ecol. Manag. 233, 195–204.

    Google Scholar 

  • Kinane J.S., Lyngkjær M. (2002) Effect of barley-legume intercrop on disease in an organic farming system. Annual report of the Danish research centre for organic farming.

    Google Scholar 

  • Kumar Anil, Solanki K.R., Singh R. (2000) Effect of Wheat as inter-crop on incidence of powdery mildew of ber (Zizyphus mauritiana). FACTRR 4, 121–124.

    Google Scholar 

  • Lafolie F., Bruckler L., Ozier-Lafontaine H., Tournebize R., Mollier A. (1999) Modelling soil-root water transport and competition for single and mixed crops. Plant Soil 210, 127–143.

    CAS  Google Scholar 

  • Lamanda N., Dauzat J., Jourdan C., Martin P., Malézieux E. (2007) Using 3D architectural models to assess light availability and root bulkiness in coconut agroforestry systems. Agroforest. Syst., DOI 10.1007/s10457-007-9068-3.

    Google Scholar 

  • Lichtfouse E. (1997) Heterogeneous turnover of molecular organic substances from crop soils as revealed by 13C labeling at natural abundance with Zea Mays. Naturwissenschaften 84, 22–23.

    Google Scholar 

  • Liebman M., Altieri M.A. (1986) Insect, weed and plant disease management in multiple cropping systems. MacMillan, NY, 383 p.

    Google Scholar 

  • Liebman M., Dick E. (1993) Crop rotation and intercropping strategies for weed management. Ecol. Appl. 3, 92–122.

    Google Scholar 

  • Lefroy E.C., Hobbs R.J., Connor M.H.O., Pate J.S. (1999) What can agriculture learn from natural ecosystems? Agroforest. Syst. 45, 425–438.

    Google Scholar 

  • Lin C.H., McGraw M.L., George M.F., Garrett H.E. (2001) Nutritive quality and morphological development under partial shade of some forage species with agroforestry potential. Agroforest. Syst. 53, 269–281.

    Google Scholar 

  • Liu J., Ashton P.S. (1995) Individual-based simulation models for forest succession and management. Forest Ecol. Manag. 73, 157–175.

    Google Scholar 

  • Loreau M., Hector A. (2001) Partitioning selection and complementarity on biodiversity experiments. Nature 412, 72–76.

    PubMed  CAS  Google Scholar 

  • Loreau M., Naem S., Inchausti P., Bengtsson J, Grime J.P., Hooper D.U., Huston M.A., Taffaelli D., Schmid B., Tilman D., Wardle D.A. (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808.

    PubMed  CAS  Google Scholar 

  • Lose S.J., Hilger T.H., Leihner D.E., Kroschel J. (2003) Cassava, maize and tree root development as affected by various agroforestry and cropping systems in Benin, West Africa. Agr. Ecosyst. Environ. 100, 137–151.

    Google Scholar 

  • Loyce C., Rellier J.P., Meynard J.M. (2002) Management planning for winter wheat with multiple objectives: the BETHA system. Agr. Syst. 72, 9–31.

    Google Scholar 

  • Main A.R. (1999) How much biodiversity is enough? Agroforest. Syst. 45, 23–41.

    Google Scholar 

  • Malézieux E., Moustier P. (2005a) La diversification dans les agricultures du Sud : à la croisée de logiques d’environnement et de marché. I. Un contexte nouveau. Cah. Agr. 14, 277–281.

    Google Scholar 

  • Malézieux E., Moustier P. (2005b) La diversification dans les agricultures du Sud : à la croisée de logiques d’environnement et de marché. II. Niveaux d’organisation, méthodes d’analyse et outils de recherche. Cah. Agr. 14, 375–382.

    Google Scholar 

  • Malézieux E., Lamanda N., Laurans M., Deheuvels O., Tassin J., Gourlet-Fleury S. (2007) Plant Functional Types and Traits: Their Relevance to Better Understand Functioning and Properties of Agroforestry Systems, 2nd Symposium on multistrata agroforestry, CATIE, Costa Rica (in press).

    Google Scholar 

  • Manson D.G., Hanan J., Hunt M., Bristow M., Erskine P.D., Lamb D., Schmidt S. (2006) Modelling predicts positive and negative interactions between three Australian tropical tree species in monoculture and binary mixture. Forest Ecol. Manag. 233, 315–323.

    Google Scholar 

  • Mead R., Willey R.W. (1980) The concept of ‘land equivalent ratio’ and advantages in yields from intercropping. Exp. Agr. 16, 217–228.

    Google Scholar 

  • Mobbs D.C., Cannell M.G.R., Crout N.M.J., Lawson G.J., Friend A.D., Arah J. (1998) Complementarity of light and water use in tropical agroforests I. Theoretical model outline, performance and sensitivity. Forest Ecol. Manag. 102, 259–274.

    Google Scholar 

  • Monteith J.L. (1977) Climate and the efficiency of crop production in Britain. Philos. T. Roy. Soc. London, pp. 277–294.

    Google Scholar 

  • Muschler R.G. (2001) Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agroforest. Syst. 85, 131–139.

    Google Scholar 

  • Nair P.K.R. (1993) An introduction to agroforestry. Kluwer, UK, 499 p.

    Google Scholar 

  • Nickel J.L. (1973) Pest situations in changing agricultural systems – a review. Bull. Entomol. Soc. Am. 19, 136–142.

    Google Scholar 

  • Ogenga-Latigo M.W., Ampofo J.K.O., Balidawa C.W. (1992) Influence of maize row spacing on infestation and damage of intercropped beans by the bean aphid (Aphis fabae). Field Crop. Res. 30, 110–122.

    Google Scholar 

  • Ong C.K., Huxley P. (1996) Tree-crop interactions: a physiological approach. CAB International, Wallingford.

    Google Scholar 

  • Osty P.L., Lardon S., de Sainte-Marie C. (1998) Comment analyser les transformations de l’activité productrice des agriculteurs ? Proposition à partir des systèmes techniques de production. In: Brossier J., Dent B. (Eds.), Gestion des exploitations et des ressources rurales. Étud. Rech. Syst. Agraires Dev. 31, 397–413.

    Google Scholar 

  • Ozier-Lafontaine H., Vercambre G., Tournebize R. (1997) Radiation and transpiration partitioning in a maize-sorghum intercrop: A comparison of two models. Field Crop. Res. 49, 127–145.

    Google Scholar 

  • Ozier-Lafontaine H., Lafolie F., Bruckler L., Tournebize R., Mollier A. (1998) Modeling competition for water in intercrops: theory and comparison with field experiments. Plant Soil 204, 183–201.

    CAS  Google Scholar 

  • Park S.E., Benjamin L.R., Watkinson A.R. (2002) Comparing biological productivity in cropping systems: a competition approach. J. Appl. Ecol. 39, 416–426.

    Google Scholar 

  • Park S.E., Benjamin L.R., Watkinson A.R. (2003) The theory and application of plant competition models: an agronomic perspective. Ann. Bot. 92, 741–748.

    PubMed  Google Scholar 

  • Perfecto I., Rice R.A., Green Berg, Van der Voort M.E. (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46, 598–608

    Google Scholar 

  • Perfecto I., Mas A., Dietsch T., Vandermeer J. (2003) Conservation of biodiversity in coffee agroecosystems: a tri-taxa comparison in southern Mexico. Biodivers. Conserv. 12, 1239–1252.

    Google Scholar 

  • Perrin R.M. (1977) The role of environmental diversity in crop protection. Prot. Ecology 2, 77–114.

    Google Scholar 

  • Poggio S.L. (2005) Structure of weed communities occuring in monoculture and intercropping of field pea and barley. Agr. Ecosyst. Environ. 109, 48–58.

    Google Scholar 

  • Price C. (1995a) Economic evaluation of financial and non-financial costs and benefits in agroforestry development and the value of sustainability. Agroforest. Syst. 30, 75–86.

    Google Scholar 

  • Price G.R. (1970) Selection and covariance. Nature 227, 520–521.

    PubMed  CAS  Google Scholar 

  • Price G.R. (1995b) The nature of selection. J. Theor. Biol. 175, 389–396.

    PubMed  CAS  Google Scholar 

  • Prusinkiewicz P. (2004) Modelling plant growth and development. Curr. Opin. Plant Biol. 7, 79–83.

    PubMed  CAS  Google Scholar 

  • Ramirez O.A., Somarriba E., Ludewigs T., Ferreira P. (2001) Financial returns, stability and risk of cacao-plantain-timber agroforestry systems in Central America. Agroforest. Syst. 51, 141–154.

    Google Scholar 

  • Ranganathan R. (1992) Production possibility frontiers and estimation of competition effects: the use of a priori information on biological processes in intercropping. Exp. Agr. 28, 351–367.

    Google Scholar 

  • Rajvanshi I., Mathur B.N., Sharma G.L. (2002) Effect of intercropping on incidence of Heterodera avenae in wheat and barley crops. Annu. Plant Protection Sci. 10, 365–410.

    Google Scholar 

  • Rodriguez-Cabana R., Kloepper J.W. (1998) Cropping systems and the enhancement of microbial activities antagonistic to nematodes. Nematropica 28, 144.

    Google Scholar 

  • Rossing W.A.H., Jansma E.J., de Ruijter F.J., Schans J. (1997) Operationalizing sustainability: exploring options for environmentally friendly flower buble production systems. Eur. J. Plant Pathol. 103, 217–234.

    Google Scholar 

  • Root R.B. (1973) Organization of a plant-arthropod association in simple and diverse habitats – fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–120.

    Google Scholar 

  • Sain G., Ponce I., Borbon E. (1994) Profitability of the Abonera system practiced by farmers on the Atlantic Coast of Honduras. In: Thurston H.D., Smith M., Abawi G., Kearl S. (Eds.), TAPADO Slash/mulch: how farmers use it and what researchers know about it. CATIE and CIIFAD, Ithaca, New York, pp. 273–282.

    Google Scholar 

  • Scopel E., Da Silva F.A.M., Corbeels M., Affholder F., Maraux F. (2004) Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24, 383–395.

    Google Scholar 

  • Scopel E., Findeling A., Chavez Guerra E., Corbeels M. (2005) Impact of direct sowing mulch-based cropping systems on soil carbon, soil erosion and maize yield. Agron. Sustain. Dev. 25, 425–432.

    CAS  Google Scholar 

  • Sébillotte M. (1974) Agronomie et agriculture, analyse des tâches de l’agronome. Cah. Orstom, série Biol. 24, 3–25.

    Google Scholar 

  • Sébillotte M. (1978) Itinéraires techniques et évolution de la pensée agronomique. CR Acad. Agric. France 11, 906–913.

    Google Scholar 

  • Sébillotte M. (1990) Système de culture, un concept opératoire pour les agronomes. In: Combe L., Picard D. (Eds.), Les systèmes de culture. Paris, INRA, pp. 165–196.

    Google Scholar 

  • Shelton A.M., Badenes-Perez F.R. (2006) Concepts and applications of trap cropping in pest management. Annu. Rev. Entomol. 51, 285–308.

    PubMed  CAS  Google Scholar 

  • Sherr S., Milder J.C., Inbar M. (2007) Paying farmers for Stewardship. In: Sherr S., Mac Neely J.A. (Eds.), Farming with Nature. Island Press, Washington.

    Google Scholar 

  • Sibma L., Kort J., De Wit C.T. (1964) Experiments on competition as a means of detecting possible damage by nematodes. Jaarb Inst. Biol. Scheiks 1964, 119–124.

    Google Scholar 

  • Sinoquet H., Caldwell R.M. (1995) Estimation of light capture and partitioning in intercropping systems. In: Sinoquet H., Cruz P. (Eds.), Ecophysiology of Tropical Intercropping. INRA, Paris, pp. 79–97.

    Google Scholar 

  • Soussana J.-F., Lafarge L. (1998) Competition for resources between neighbouring species and patch scale vegetation dynamics in temperate grasslands. Ann. Zootech. 47, 371–382.

    Google Scholar 

  • Soussana J.F., Loiseau P. (2002) A grassland ecosystem model with individual based interactions (GEMINI) simulates fluctuations in the clover content of sown mixtures. In: Multi-function grasslands: quality forages, animal products and landscapes. Proceedings of the 19th General Meeting of the European Grassland Federation, La Rochelle, France, 27–30 May 2002, pp. 358–359.

    Google Scholar 

  • Stephen W., Pacala J.A., Silander J. (1990) Field tests of neighborhood population dynamic models of two annual weed species. Ecol. Monogr. 60, 113–134.

    Google Scholar 

  • Stockle C.O. (1999) Simulation of agricultural systems: the challenges ahead. In: Proceedings of the International Symposium Modelling Cropping Systems. pp. 19–24, LLeida, Catalonia, Spain.

    Google Scholar 

  • Swift M.J., Anderson J.M. (1993) Biodiversity and ecosystem function in agroecosystems. In: Shultze E., Mooney H.A. (Eds.), Biodiversity and ecosystem function. Springer, New York, pp. 57–83.

    Google Scholar 

  • Swift M.J., Vandermeer J.H., Ramakrishnan P.S., Anderson J.M., Ong C., Hawkins B. (1996) Biodiversity and agroecosystem function. In: Mooney et al.(Eds.), Biodiversity and ecosystem function, Global diversity assessment. Cambridge University Press, Cambridge, pp. 433–443.

    Google Scholar 

  • Swift M.J., Izac A.M.N., Van Noordwijk M. (2004) Biodiversity and ecosystem services. Are we asking the right questions? Agr. Ecosyst. Environ. 104, 113–134.

    Google Scholar 

  • Tilman D. (1984) Plant dominance along an experimental nutrient gradient. Ecology 65, 1445–1453.

    Google Scholar 

  • Tilman D. (1988) Plant strategies and the dynamics and structures of plant communities. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Tilman D., Wedin D., Knops J. (1996) Productivity and sustainability influenced by biodiversity in grasslands ecosystems. Nature 379, 718–720.

    CAS  Google Scholar 

  • Tilman D., Knops J., Wedin D., Reich P., Ritchie M., Siemann E. (1997) The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302.

    CAS  Google Scholar 

  • Tilman D., Cassman K., Matson P., Naylor R., Polasky S. (2002) Agricultural sustainability and intensive production practices. Nature 418, 671–677.

    PubMed  CAS  Google Scholar 

  • Tixier P., Malezieux E., Dorel M. (2004) SIMBA-POP: a cohort population model for long-term simulation of banana crop harvest. Ecol. Model. 180, 407–417.

    Google Scholar 

  • Torquebiau E. (2000) A renewed perspective on agroforestry concepts and classification. C.R. Acad. Sci. Paris 1009–1017.

    Google Scholar 

  • Trenbath B.R. (1974) Biomass productivity of mixtures. Adv. Agron. 26, 177–209.

    Google Scholar 

  • Trenbath B.R. (1993) Intercropping for the management of pests and diseases. Field Crop. Res. 34, 381–405.

    Google Scholar 

  • Tsubo M., Walker S., Ogindo H.O. (2005) A simulation model of cereal-legume intercropping systems for semi-arid regions: I. Model development. Field Crop. Res. 93, 10–22.

    Google Scholar 

  • Van der Werf W., Keesman K., Burgess P., Graves A., Pilbeam D., Incoll L.D., Metselaar K., Mayus M., Stappers R., van Keulen H. et al.(in press) Yield-SAFE: A parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecol Eng.

    Google Scholar 

  • Van Noordwijk M., Lawson G., Soumaré A., Groot J.J.R., Hairiah, K., (1996) Root distribution of trees and crops: competition and/or complementarity. In: Ong C.K., Huxley P.W. (Eds.), Tree-Crop Interactions: A Physiological Approach. CAB International, Wallingford, UK, pp. 319–364.

    Google Scholar 

  • Van Noordwijk M., Lusiana B. (1998) WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems. Agroforest. Syst. 43, 217–242.

    Google Scholar 

  • Van Oijen M. (1995) Simulation models of potato late blight. In: Haverkort A.J., MacKerron (Eds.), Potato Ecology and Modeling of Crops under Conditions Limiting Growth. Kluwer, Dordrecht, pp. 237–250.

    Google Scholar 

  • Vandermeer J.H. (1989) The Ecology of Intercropping, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Vandermeer J., Van Noordwijk M., Anderson J., Ong C., Perfecto I. (1998) Global change and multi-species ecosystems: concepts and issues. Agr. Ecosyst. Environ. 67, 1–22.

    Google Scholar 

  • Vila M., Vayreda J., Gracia C., Ibanez J.J. (2003) Does tree diversity increase wood production in pine forests? Oecologia 135, 299–303.

    PubMed  Google Scholar 

  • Vincent G., Harja D. (2002) SLIM software: a simple light interception model for multi-species, multi-strata forests. Bois Forêts des Tropiques 2, 97–100.

    Google Scholar 

  • Wallace J.S., Batchelor C.H., Dabeesing D.N., Teeluck M., Soopramanien G.C. (1991) A comparison of the light interception and water-use of plant and first ratoon sugar-cane intercropped with maize. Agr. Forest Meteorol. 57, 85–105.

    Google Scholar 

  • Welsh J.P., Philipps L., Bulson H.A.J., Wolfe M. (1999) Weed control for organic cereal crops. Proceedings of the Brighton Crop Protection Conference – Weeds, Brighton, UK, pp. 945–950.

    Google Scholar 

  • Willigen De P., Van Noordwijk M. (1987) Roots, plant production and nutrient use efficiency. Ph.D. Thesis, Wageningen Agricultural University, 281 p.

    Google Scholar 

  • Wit C.T., Van Den Berg J.P. (1965) Competition between herbage plants. Neth. J. Agr. Sci. 13, 212–221.

    Google Scholar 

  • Wilson S.D., Tilman D. (1988) Components of plant competition along an experimental gradient of nitrogen availability. Ecology 72, 1050–1065.

    Google Scholar 

  • Wong S.C., Osmond C.B. (1991) Elevated atmospheric partial pressure of CO2 and plant growth III. Interaction between Triticum aestivum (C3) and Echinocloea fumentacea (C4) during growth in mixed culture under different CO2, N nutrition and irradiance treatments, with emphasis on below ground responses, estimated using a 13C value of root mass. Aust. J. Plant Phys. 18, 137–152.

    CAS  Google Scholar 

  • Yeates G.W. (1987) How plants affect nematodes. Adv. Ecol. Res. 17, 61–113.

    Google Scholar 

Download references

Acknowledgement

We thank the two anonymous referees and the Editor-in-Chief for their helpful comments, and Peter Biggins for English revision. We dedicate this work to our friend and colleague Dr. Yves Crozat, a co-author, who sadly passed away before the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Malézieux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Malézieux, E. et al. (2009). Mixing Plant Species in Cropping Systems: Concepts, Tools and Models: A Review. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_22

Download citation

Publish with us

Policies and ethics