Skip to main content

Bruise Damage Susceptibility of Pomegranates

  • Chapter
  • First Online:
Mechanical Damage in Fresh Horticultural Produce

Abstract

During the past couple of decades, commercial cultivation of pomegranate (Punica granatum L.) fruit has become more prevalent throughout semi-temperate and sub-tropical fruit regions of the world. Pomegranate consumption has increased noticeably, in part due to the distinctive sensory and nutritional qualities of the fruit, as well as its potential health and medicinal advantages from its high concentration of antioxidants and health-promoting phytonutrients. Nonetheless, poor storage and handling practices are causing fruit quality loss in the global pomegranate industry. Mechanical damage, specifically bruising that occurs between harvesting and consumption, has become a major contributing factor to the declining market value and quality loss of many fruits, including pomegranates. This chapter will provide an overview of the pomegranate industry, including its global significance, production, trade, consumption, and nutritional value. The coverage has been expanded to include pomegranate fruit bruising—the causes, mechanisms of bruising, and economic significance. This chapter has also shed light on the factors that contribute to pomegranate fruit bruise damage, from preharvest to harvest to postharvest. This chapter also covers the measurement and analysis of pomegranate fruit damage, with a focus on the methods used to investigate into pomegranate fruit damage, with emphasis on methodologies to simulate fruit bruising, analysis, and measurement procedures, as well as the assumptions made to fit the real-time settings. The review acknowledged recent advancements in operations and handling equipment in the pomegranate industry’s modern harvest and postharvest handling system. As a result, future research directions have been outlined in this chapter, including the development of novel techniques to simulate bruising and, later, near-accurate bruise measurement methods to enable real-time simulation and quantification of bruise damage both in situ and ex situ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi, E. (2012). Bruise susceptibilities of kiwifruit as affected by impact and fruit properties. Research in Agricultural Engineering, 58, 107–113.

    Article  Google Scholar 

  • Ahmadi, E., Ghassemzadeh, H. R., Sadeghi, M., Moghaddam, M., & Neshat, S. Z. (2010). The effect of impact and fruit properties on the bruising of peach. Journal of Food Engineering, 97, 110–117.

    Article  Google Scholar 

  • Al-Said, F. A., Opara, U. L., & Al-Yahyai, R. A. (2009). Physico-chemical and textural quality attributes of pomegranate cultivars (Punica granatum L.) grown in the Sultanate of Oman. Journal of Food Engineering, 90(1), 129–134. 169.

    Article  Google Scholar 

  • Ambaw, A., Fadiji, T., & Opara, U. L. (2021). Thermo-mechanical analysis in the fresh fruit cold chain. A review on recent advances. Foods, 10(6), 1357. https://doi.org/10.3390/foods10061357

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambaw, A., Mukama, M., Fadiji, T., & Opara, U. L. (2022). Fresh fruit packaging design verification through virtual prototyping technique. Food Packaging and Shelf Life, 32, 100858. https://doi.org/10.1016/j.fpsl.2022.100858

    Article  Google Scholar 

  • Baker, G. A., Gray, L. C., Harwood, M. J., Osland, T. J., & Tooley, J. B. C. (2019). On-farm food loss in northern and Central California: Results of field survey measurements. Resources, Conservation and Recycling, 149, 541–549.

    Article  Google Scholar 

  • Bantayehu, M., Alemayehu, M., Abera, M., & Bizuayehu, S. (2017). Postharvest losses assessment of tropical fruits in the market chai of North Western Ethiopia. Food Science and Quality Management, 66, 1–12.

    Google Scholar 

  • Baranowski, P., Mazurek, W., Wozniak, J., & Majewska, U. (2012). Detection of early bruises in apples using hyperspectral data and thermal imaging. Journal of Food Engineering, 110(3), 345–355.

    Article  Google Scholar 

  • Bhattarai, D. R., Subedi, G. D., Gautam, I. P., & Chauhan, S. (2017). Postharvest supply chain study of carrot in Nepal. International Journal of Horticulture, 7, 239–245.

    Google Scholar 

  • Blahovec, J. (2006). Shape of bruise spots in impacted potatoes. Postharvest Biology and Technology, 39, 278–284.

    Article  Google Scholar 

  • Bollen, A. F. (2005). Major factors causing variation in bruise susceptibility of apples (Malus domestica) grown in New Zealand. New Zealand Journal of Crop and Horticultural Science, 33, 201–210.

    Article  Google Scholar 

  • Bollen, A. F., Nguyen, H. X., & Dela Rue, B. T. (1999). Comparison of methods for estimating the bruise volume of apples. Journal of Agricultural Engineering Research, 74, 325–330.

    Article  Google Scholar 

  • Bollen, A. F., Cox, N. R., Dela Rue, B. T., & Painter, D. J. (2001). A descriptor for damage susceptibility of a population of produce. Journal of Agricultural Engineering Research, 78, 391–395.

    Article  Google Scholar 

  • Bond, R. (2016). Carrot loss during primary production: Field waste and pack house waste. Master’s thesis, Hedmark University, Hedmark, Norway.

    Google Scholar 

  • Bugaud, C., Ocrisse, G., Salmon, F., & Rinaldo, D. (2014). Bruise susceptibility of banana peel in relation to genotype and post-climacteric storage conditions. Postharvest Biology and Technology, 87, 113–119.

    Article  Google Scholar 

  • Canete, M. L., Hueso, J. J., Pinillos, V., & Cuevas, J. (2015). Ripening degree at harvest affects bruising susceptibility and fruit sensorial traits of loquat (Eriobotrya japonica Lindl.). Scientia Horticulturae, 187, 102–107.

    Article  Google Scholar 

  • Czieczor, L., Bentkamp, C., Damerow, L., & Blanke, M. (2018). Non-invasive determination of the quality of pomegranate fruit. Postharvest Biology and Technology, 2018(136), 74–79.

    Article  Google Scholar 

  • Dang, H. Q., Kim, I., Cho, B. K., & Kim, M. S. (2012). Detection of bruise damage of pear using hyperspectral imagery. In 2012 12th International Conference on Control, Automation and Systems (ICCAS) (pp. 1258–1260). IEEE.

    Google Scholar 

  • de Oliveira, F. L., Arruda, T. Y. P., da Silva Lima, R., Casarotti, S. N., & Morzelle, M. C. (2020). Pomegranate as a natural source of phenolic antioxidants: A review. Journal of Food Bioactives, 9, 10–22.

    Article  Google Scholar 

  • ElMasry, G., Wang, N., Vigneault, C., Qiao, J., & ElSayed, A. (2008). Early detection of apple bruises on different background colors using hyperspectral imaging. LWT-Food Science and Technology, 41(2), 337–345.

    Article  CAS  Google Scholar 

  • Ergun, M. (2017). Physical, physiochemical and electrochemical responses of ‘Galaxy’ apples to mild bruising. European Journal of Horticultural Science, 82, 244–250.

    Article  Google Scholar 

  • Fadiji, T., Coetzee, C., Chen, L., Chukwu, O., & Opara, U. L. (2016a). Susceptibility of apples to bruising inside ventilated corrugated paper-board packages during simulated transport damage. Postharvest Biology and Technology, 118, 111–119.

    Article  Google Scholar 

  • Fadiji, T., Coetzee, C., Pathare, P., & Opara, U. L. (2016b). Susceptibility to impact damage of apples inside ventilated corrugated paperboard packages: Effects of package design. Postharvest Biology and Technology, 111, 286–296.

    Article  Google Scholar 

  • Faria, A., & Calhau, C. (2011). The bioactivity of pomegranate: Impact on health and disease. Critical Reviews in Food Science and Nutrition, 51(7), 626-634.9.

    Article  Google Scholar 

  • Fawole, O. A., & Opara, U. L. (2013a). Changes in physical properties, chemical and elemental composition and antioxidant capacity of pomegranate (cv. Ruby) fruit at five maturity stages. Scientia Horticulturae, 150(4), 37–46. https://doi.org/10.1016/j.scienta.2012.10.026

    Article  CAS  Google Scholar 

  • Fawole, O. A., & Opara, U. L. (2013b). Developmental changes in maturity indices of pomegranate fruit: A descriptive review. Scientia Horticulturae, 159, 152–161. https://doi.org/10.1016/j.scienta.2013.05.016

    Article  Google Scholar 

  • Fawole, O. A., & Opara, U. L. (2013c). Effects of maturity status on biochemical content, polyphenol composition and antioxidant capacity of pomegranate fruit arils (cv. ‘Bhagwa’). South African Journal of Botany, 85, 23–31. https://doi.org/10.1016/j.sajb.2012.11.010

    Article  CAS  Google Scholar 

  • Fawole, O. A., & Opara, U. L. (2013d). Effects of storage temperature and duration on physiological responses of pomegranate fruit. Industrial Crops and Products, 47, 300–309. https://doi.org/10.1016/j.indcrop.2013.03.028

    Article  CAS  Google Scholar 

  • Fawole, O. A., & Opara, U. L. (2013e). Fruit growth dynamics, respiration rate and physico-textural properties during pomegranate development and ripening. Scientia Horticulturae, 157, 90–98. https://doi.org/10.1016/j.scienta.2013.04.004

    Article  Google Scholar 

  • Fawole, O. A., & Opara, U. L. (2013f). Harvest discrimination of pomegranate fruit: postharvest quality changes and relationships between instrumental and sensory attributes during shelf life. Journal of Food Science, 78(8), S1264–S1272. https://doi.org/10.1111/1750-3841.12176

    Article  CAS  PubMed  Google Scholar 

  • Fawole, O. A., & Opara, U. L. (2013g). Seasonal variation in chemical composition, aroma volatiles and antioxidant capacity of pomegranate during fruit development. African Journal of Biotechnology, 12(25), 4006.

    CAS  Google Scholar 

  • Ferreira, M. D., Sargent, S. A., Brecht, J. K., & Chandler, C. K. (2008). Strawberry fruit resistance to simulated handling. Science in Agriculture, 65, 490–495.

    Google Scholar 

  • Fu, H., Karkee, M., He, L., Duan, J., Li, J., & Zhang, Q. (2020). Bruise patterns of fresh market apples caused by fruit-to-fruit impact. Agronomy, 10(1), 59.

    Article  Google Scholar 

  • Fu, H., Du, W., Yang, J., Wang, W., Wu, Z., & Yang, Z. (2023). Bruise measurement of fresh market apples caused by repeated impacts using a pendulum method. Postharvest Biology and Technology, 195, 112143.

    Article  CAS  Google Scholar 

  • Gao, M., Guo, W., Huang, X., Du, R., & Zhu, X. (2021). Effect of pressing and impacting bruises on optical properties of kiwifruit flesh. Postharvest Biology and Technology, 172, 111385.

    Article  CAS  Google Scholar 

  • Garcia, J. L., Ruiz-Altisent, M., & Barreiro, P. (1995). Factors influencing mechanical properties and bruise susceptibility of apples and pears. Journal of Agricultural Engineering Research, 61, 11–18.

    Article  Google Scholar 

  • Ghanbarpour, E., Rezaei, M., & Lawson, S. (2019). Reduction of cracking in pomegranate fruit after foliar application of humic acid, calcium-boron and kaolin during water stress. Erwerbs-obstbau, 61, 29–37.

    Article  Google Scholar 

  • Hertog, M. L. A. T. M., Ben-Arie, R., Roth, E., & Nicolai, B. M. (2004). Humidity and temperature effects on invasive and non-invasive firmness measures. Postharvest Biology and Technology, 33, 79–91.

    Article  Google Scholar 

  • Holt, J. E., & Schoorl, D. (1977). Bruising and energy dissipation in apples. Journal of Texture Studies, 7, 421–432.

    Article  Google Scholar 

  • Hung, Y., & Prussia, S. (1989). Effect of maturity and storage time on the bruise susceptibility of peaches (cv. Red Globe). Transactions of ASAE, 32, 1377–1382.

    Google Scholar 

  • Hussein, Z., Caleb, O. J., & Opara, U. L. (2015). Perforation-mediated modified atmosphere packaging of fresh and minimally processed produce–a review. Food Packaging and Shelf Life, 6, 7–20.

    Article  Google Scholar 

  • Hussein, Z., Fawole, O. A., & Opara, U. L. (2018). Preharvest factors influencing bruise damage of fresh fruits–a review. Scientia Horticulturae, 229, 45–58.

    Article  Google Scholar 

  • Hussein, Z., Fawole, O. A., & Opara, U. L. (2019a). Bruise damage susceptibility of pomegranates (Punica granatum, L.) and impact on fruit physiological response during short term storage. Scientia Horticulturae, 246, 664–674.

    Article  Google Scholar 

  • Hussein, Z., Fawole, O. A., & Opara, U. O. (2019b). Bruise damage of pomegranate during long-term cold storage: Susceptibility to bruising and changes in textural properties of fruit. International Journal of Fruit Science, 20, 211–230.

    Article  Google Scholar 

  • Hussein, Z., Fawole, O. A., & Opara, U. O. (2020a). Effects of bruising and storage duration on physiological response and quality attributes of pomegranate fruit. Scientia Horticulturae, 267, 109306.

    Article  CAS  Google Scholar 

  • Hussein, Z., Fawole, O. A., & Opara, U. L. (2020b). Harvest and postharvest factors affecting bruise damage of fresh fruits. Horticultural Plant Journal, 6(1), 1–13.

    Article  Google Scholar 

  • Jarimopas, B., Singh, S. P., Sayasoonthorn, S., & Singh, J. (2007). Comparison of package cushioning materials to protect post-harvest impact damage to apples. Packaging Technology and Science, 20, 315–324.

    Article  Google Scholar 

  • Kabas, O. (2010). Methods of measuring bruise volume of pear (Pyrus communis L.). International Journal of Food Properties, 13, 1178–1186.

    Article  Google Scholar 

  • Kahramanoglu, I. (2019). Trends in pomegranate sector: Production, postharvest handling and marketing. International Journal of Agriculture Forestry and Life Science, 3, 239–246.

    Google Scholar 

  • Katz, S. R., Newman, R. A., & Lansky, E. P. (2007). Punica granatum: Heuristic treatment for diabetes mellitus. Journal of Medicinal Food, 10(2), 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Kitthawee, U., Pathaveerat, S., Srirungruang, T., & Slaughter, D. (2011). Mechanical bruising of young coconut. Biosystems Engineering, 109(3), 211–219.

    Article  Google Scholar 

  • Komarnicki, P., Stopa, R., Szyjewicz, D., & Mlotek, M. (2016). Evaluation of bruise resistance of pears to impact load. Postharvest Biology and Technology, 114, 36–44.

    Article  Google Scholar 

  • Lewis, R., Yoxall, A., Canty, L. A., & Romo, E. R. (2007). Development of engineering design tools to help reduce apple bruising. Journal of Food Engineering, 83, 356–365.

    Article  Google Scholar 

  • Li, Z., & Thomas, C. (2014). Quantitative evaluation of mechanical damage to fresh fruits. Trends in Food Science and Technology, 35, 138–150.

    Article  Google Scholar 

  • Lufu, R., Ambaw, A., & Opara, U. L. (2019). The contribution of transpiration and respiration processes in the mass loss of pomegranate fruit (cv. Wonderful). Postharvest Biology and Technology, 157, 1–10.

    Article  Google Scholar 

  • Lufu, R., Ambaw, A., & Opara, U. L. (2020). Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Scientia Horticulturae, 272, 1–16.

    Article  Google Scholar 

  • Lufu, R., Ambaw, A., & Opara, U. L. (2021). The influence of internal packaging (liners) on moisture dynamics, physical and physiological quality of pomegranate fruit during cold storage. Foods, 10, 1388. https://doi.org/10.3390/foods10061388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magangana, T. P., Makunga, N. P., Fawole, O. A., & Opara, U. L. (2020). Processing factors affecting the phytochemical and nutritional properties of pomegranate (Punica granatum L.) peel waste: A review. Molecules, 25(20), 4690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Romero, D., Valero, D., Serrano, M., Burló, F., Carbonell, A., Burgos, I., & Riquelme, F. (2000). Exogenous polyamines and gibberellic acid effects on peach (Prunus persica L.) storability improvement. Journal of Food Science, 65, 288–294.

    Article  Google Scholar 

  • Martinez-Romero, D., Serrano, M., Carbonell, A., Castillo, S., Riquelme, F., & Valero, D. (2004). Mechanical damage during fruit postharvest handling: Technical and physiological implications. In Production practices and quality assessment of food crops (3rd ed., pp. 233–252). Springer.

    Chapter  Google Scholar 

  • Mazhar, M., Joyce, D., Cowin, G., Brereton, I., Hofman, P., Collins, R., & Gupta, M. (2015). Non-destructive 1H-MRI assessment of flesh bruising in avocado (Persea americana M.) cv. Hass. Postharvest Biology and Technology, 100, 33–40.

    Article  Google Scholar 

  • Menesatti, P., & Paglia, G. (2001). Development of a drop damage index of fruit resistance to damage. Journal of Agricultural Engineering Research, 80, 53–64.

    Article  Google Scholar 

  • Middha, S. K., Usha, T., & Pande, V. (2013). A review on antihyperglycemic and antihepatoprotective activity of eco-friendly Punica granatum peel waste. Evidence-Based Complementary and Alternative Medicine, 2013, 656172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitsuhashi-Gonzalez, K., Pitts, M. J., Fellman, J. K., Curry, E. A., & Clary, C. D. (2010). Bruising profile of fresh apples associated with tissue type and structure. Applied Engineering in Agriculture, 26, 509–517.

    Article  Google Scholar 

  • Mohammad Shafie, M., Rajabipour, A., & Mobli, H. (2017). Determination of bruise incidence of pomegranate fruit under drop case. International Journal of Fruit Science, 17(3), 296–309.

    Article  Google Scholar 

  • Mohsenin, N. N. (1986). Physical properties of plant and animal materials: Structure. In Physical characteristic and mechanical properties (1st ed.). Gordon and Breach Science Publishers.

    Google Scholar 

  • Montero, C. R. S., Schwarz, L. L., Dos Santos, L. C., Andreazza, C. S., Kechinski, C. P., & Bender, R. J. (2009). Postharvest mechanical dam- age affects fruit quality of ‘Montenegrina’ and ‘Rainha’ tangerines. Pesquisa Agropecuaria Brasileira, 44, 1636–1640.

    Article  Google Scholar 

  • Mousavinejad, G., Emam-Djomeh, Z., Rezaei, K., & Khodaparast, M. H. H. (2009). Identification and quantification of phenolic compounds and their effects on antioxidant activity in pomegranate juices of eight Iranian cultivars. Food Chemistry, 115(4), 1274–1278.

    Article  CAS  Google Scholar 

  • Mowatt, C. M. (1997). Factors influencing the susceptibility of apples to bruising, horticultural science. PhD thesis, Massey University, Palmerston North, New Zealand.

    Google Scholar 

  • Mphahlele, R. R., Fawole, O. A., & Opara, U. L. (2016). Influence of packaging system and long-term storage on physiological attributes, biochemical quality, volatile composition and antioxidant properties of pomegranate fruit. Scientia Horticulturae, 211, 140–151.

    Article  CAS  Google Scholar 

  • Mukama, M., Ambaw, A., & Opara, U. L. (2020a). A virtual prototyping approach for redesigning the vent-holes of packaging for handling pomegranate fruit–A short communication. Journal of Food Engineering, 270, 1–5.

    Article  Google Scholar 

  • Mukama, M., Ambaw, A., & Opara, U. L. (2020b). Advances in design and performance evaluation of fresh fruit ventilated distribution packaging: A review. Food Packaging and Shelf Life, 24, 100472. https://doi.org/10.1016/j.fpsl.2020.100472

    Article  Google Scholar 

  • Mukama, M., Ambaw, A., & Opara, U. L. (2020c). Thermophysical properties of fruit—a review with reference to postharvest handling. Journal of Food Measurement and Characterization, 14, 2917–2937. https://doi.org/10.1007/s11694-020-00536-8

    Article  Google Scholar 

  • Mukama, M., Ambaw, A., & Opara, U. L. (2021). Characterisation of ventilated multi-scale packaging designs used for postharvest handling of pomegranate in South Africa. AMA-Agricultural Mechanization in Asia, Africa and Latin America, 52(4), 31–38.

    Google Scholar 

  • Munhuweyi, K., Lennox, C. L., Meitz-Hopkins, J. C., Caleb, O. J., & Opara, U. L. (2016). Major diseases of pomegranate (Punica granatum L.), their causes and management – A review. Scientia Horticulturae, 211, 126–139.

    Article  Google Scholar 

  • Opara, L. U. (2007). Bruise susceptibilities of ‘Gala’ apples as affected by orchard management practices and harvest date. Postharvest Biology and Technology, 43, 47–54.

    Article  Google Scholar 

  • Opara, U. L., & Pathare, P. B. (2014). Bruise damage measurement and analysis of fresh horticultural produce—A review. Postharvest Biology and Technology, 91, 9–24.

    Article  Google Scholar 

  • Opara, L. U., Studman, C. J., & Banks, N. H. (1997). Fruit skin splitting and cracking. Horticultural Reviews, 19, 217–262.

    Google Scholar 

  • Opara, L. U., Al-Ghafri, A., Agzoun, H., Al-Issai, J., & Al-Jabri, F. (2007). Design and development of a new device for measuring susceptibility to impact damage of fresh produce. New Zealand Journal of Crop and Horticultural Science, 35, 245–251.

    Article  Google Scholar 

  • Opara, U. L., Al-Ani, M. R., & Al-Shuaibi, Y. (2009). Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food and Bioprocess Technology, 2, 315–321.

    Article  CAS  Google Scholar 

  • Opara, U. L., Hussein, Z., & Caleb, O. J. (2017). Phytochemical properties and antioxidant activities of minimally processed “Acco” pomegranate arils as affected by perforation-mediated modified atmosphere packaging. Journal of Food Processing and Preservation, 41(3), e12948.

    Article  Google Scholar 

  • Opara, I. K., Fawole, O. A., & Opara, U. L. (2021a). Postharvest losses of pomegranate fruit at the packhouse and implications for sustainability indicators. Sustainability, 13(9), 5187.

    Article  CAS  Google Scholar 

  • Opara, I. K., Fawole, O. A., Kelly, C., & Opara, U. L. (2021b). Quantification of on-farm pomegranate fruit postharvest losses and waste, and implications on sustainability indicators: South African case study. Sustainability, 13(9), 5168.

    Article  CAS  Google Scholar 

  • Palou, L., Guardado, A., & Montesinos-Herrero, C. (2010). First report of Penicillium spp. and Pilidiella granati causing postharvest fruit rot of pomegranate in Spain. New Disease Reports, 22(21), 2044–0588.

    Google Scholar 

  • Palou, L., Taberner, V., Guardado, A., Del Río, M. Á., & Montesinos-Herrero, C. (2013). Incidence and etiology of postharvest fungal diseases of pomegranate (Punica granatum cv. Mollar de Elche) in Spain. Phytopathologia Mediterranea, 52, 478–489.

    Google Scholar 

  • Pang, D. W. (1993). Prediction and quantification of apple bruising. Massey University.

    Google Scholar 

  • Pang, W., Studman, C. J., & Ward, G. T. (1992). Bruising damage in apple-to-apple impact. Journal of Agricultural Engineering Research, 52, 229–240.

    Article  Google Scholar 

  • Pareek, S., Valero, D., & Serrano, M. (2015). Postharvest biology and technology of pomegranate. Journal of the Science of Food and Agriculture, 95(12), 2360–2379.

    Article  CAS  PubMed  Google Scholar 

  • Pathare, P. B., & Al-Dairi, M. (2021). Bruise susceptibility and impact on quality parameters of pears during storage. Frontiers in Sustainable Food Systems, 5, 263.

    Article  Google Scholar 

  • Pholpho, T., Pathaveerat, S., & Sirisomboon, P. (2011). Classification of longan fruit bruising using visible spectroscopy. Journal of Food Engineering, 104(1), 169–172.

    Article  Google Scholar 

  • Polat, R., Aktas, T., & Ikinci, A. (2012). Selected mechanical properties and bruise susceptibility of nectarine fruit. International Journal of Food Properties, 15(6), 1369–1380.

    Article  Google Scholar 

  • Pomegranate Producers Association of South Africa (POMASA). (2019). Pomegranate industry overview: statistics and information. Retrieved December 18, 2022, from https://www.sapomegranate.co.za/statistics-and-information/pomegranate-industry-overview/.

  • Roy, S., Conway, W. S., Watada, A. E., Sams, C. E., Erbe, E. F., & Wergin, W. P. (1994). Heat treatment affects epicuticular wax structure and postharvest calcium uptake in ‘Golden Delicious’ apples. HortScience, 29, 1056–1058.

    Article  Google Scholar 

  • Rymon, D. (2011). Mapping features of the global pomegranate market. Acta Horticulturae, 890, 599–602.

    Article  Google Scholar 

  • Saltveit, M. E. (1984). Effects of temperature on firmness and bruising of ‘Starkrimson Delicious’ and ‘Golden Delicious’ apples. HortScience, 19(4), 550–551.

    Article  Google Scholar 

  • Shewfelt, R. L. (1986). Postharvest treatment for extending the shelf life of fruits and vegetables. Food Technology Journal, 40, 70–89.

    Google Scholar 

  • Singh, F., Katiyar, V. K., & Singh, B. P. (2014). Analytical study of turgor pressure in apple and potato tissues. Postharvest Biology and Technology, 89, 44–48.

    Article  Google Scholar 

  • Studman, C. (1997). Factors affecting the bruise susceptibility of fruit. In G. Jeronimidis & J. F. V. Vincent (Eds.), Proceedings of the 2nd International Conference of Plant Biomechanics (pp. 273–281). Centre for Biomimetics, University of Reading.

    Google Scholar 

  • Tahir, I. I., Johansson, E., & Olsson, M. E. (2009). Improvement of apple quality and storability by a combination of heat treatment and controlled atmosphere storage. HortScience, 44, 1648–1654.

    Article  Google Scholar 

  • Viuda-Martos, M., Fernández-López, J., & Pérez-Álvarez, J. A. (2010). Pomegranate and its many functional components as related to human health: A review. Comprehensive Reviews in Food Science and Food Safety, 9(6), 635–654.

    Article  CAS  PubMed  Google Scholar 

  • Wang, P., Zhang, Q., Hou, H., Liu, Z., Wang, L., Rasekhmagham, R., Kord-Varkaneh, H., Santos, H. O., & Yao, G. (2020). The effects of pomegranate supplementation on biomarkers of inflammation and endothelial dysfunction: A meta-analysis and systematic review. Complementary Therapies in Medicine, 49, 1–8.

    Article  Google Scholar 

  • Weerakkody, P., Jobling, J., Infante, M. M. V., & Rogers, G. (2010). The effect of maturity, sunburn and the application of sunscreens on the internal and external qualities of pomegranate fruit grown in Australia. Scientia Horticulturae, 124, 57–61.

    Article  CAS  Google Scholar 

  • Xia, M., Zhao, X., Wei, X., Guan, W., Wei, X., Xu, C., & Mao, L. (2020). Impact of packaging materials on bruise damage in kiwifruit during free drop test. Acta Physiologiae Plantarum, 42(7), 1–11.

    Article  Google Scholar 

  • Xing, J., Bravo, C., Moshou, D., Ramon, H., & De Baerdemaeker, J. (2006). Bruise detection on ‘Golden Delicious’ apples by vis/NIR spectroscopy. Computers in Electronics and Agriculture, 52, 11–20.

    Article  Google Scholar 

  • Zarifneshat, S., Ghassemzadeh, H. R., Sadeghi, M., Abbaspour-Fard, M. H., Ahmadi, E., Javadi, A., & Shervani-Tabar, M. T. (2010). Effect of impact level and fruit properties on Golden Delicious apple bruising. American Journal of Agricultural and Biological Sciences, 5, 114–121.

    Article  Google Scholar 

Download references

Acknowledgments

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Number: 64813). The opinions, findings, and conclusions or recommendations expressed are those of the author(s) alone, and the NRF accepts no liability whatsoever in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umezuruike Linus Opara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Opara, U.L., Hussein, Z., Fawole, O. (2023). Bruise Damage Susceptibility of Pomegranates. In: Pathare, P.B., Opara, U.L. (eds) Mechanical Damage in Fresh Horticultural Produce. Springer, Singapore. https://doi.org/10.1007/978-981-99-7096-4_8

Download citation

Publish with us

Policies and ethics