Skip to main content

Assessing the Efficacy of Glacier Inventories to Evaluate Climate Change Impacts: Key Takeaways from Baspa River Basin

  • Chapter
  • First Online:
Risk, Uncertainty and Maladaptation to Climate Change

Abstract

A glacier inventory is helpful in studying temporal glacier changes, glacio-hydrological regimes, future sea level rise, and climate model optimisation for different scenarios. The compilation of any glacier inventory requires substantial manual and computational efforts. However, the inaccuracies in glacier inventories have implications for modelled glacio-hydro-climatological results, necessitating a need to understand the degree of area uncertainties in the input inventories. In this work, we first developed a glacier inventory dataset using high-resolution images and field validations for our case study site, i.e., Baspa River Basin, India. Subsequently, through spatial comparison, we estimated the extent of area uncertainties across the available regional and global-scale glacier inventories. These area uncertainties are found to be significantly high, within a range of ± 23%, and they can further magnify, if the mapped basin area has a higher proportion of debris-covered glaciers. We further performed a sensitivity analysis to assess the impact of area discrepancies on a glacio-hydrological model outcome. The change in debris-covered glacier area by ± 25% resulted in alteration of average monthly discharge by up to ± 16%. It is significant enough to highlight the need for quality-controlled inventory data for running such models. In the last part of this chapter, we present our recommendations for implementing the probable uncertainty scenarios while discussing the research on the future projections. While we have reached a critical point of climate change in human history, there are existing uncertainties in assessing future water security due to various data and geopolitical reasons. The perspectives offered in this chapter can help better account for glacier area-related uncertainties in glacio-hydrology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • ASTER GDEM: A product of the Ministry of Economy, Trade, and Industry (METI) and the National Aeronautics and Space Administration (NASA). (downloaded from https://earthexplorer.usgs.gov Adhikari, S., and S. J. Marshall (2012), Glacier volume-area relation for high-order mechanics and transient glacier states, Geophysical Research Letters, L16505, Doi: https://doi.org/10.1029/2012GL052712.

  • Adhikari S, Marshall SJ (2012) Glacier volume-area relation for high-order mechanics and transient glacier states. Geophys Res Lett L16505. https://doi.org/10.1029/2012GL052712

  • Aizen VB, Aizen EM, Kuzmichenok VA (2007a) Geo-informational simulation of possible changes in Central Asian water resources. Global Planet Change 56(3):341–358

    Article  Google Scholar 

  • Aizen VB, Aizen EM, Kuzmichonok VA (2007b) Glaciers and hydrological changes in the Tien Shan: simulation and prediction. Environ Res Lett 2(4):045019

    Article  Google Scholar 

  • Arendt AA, Echelmeyer KA, Harrison WD, Lingle CS, Valentine VB (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science 297(5580):382–386

    Article  CAS  Google Scholar 

  • Arora M, Rathore DS, Singh RD, Kumar R, Kumar A (2010) Estimation of Melt Contribution to Total Streamflow in River Bhagirathi and River Dhauli Ganga at Loharinag Pala and Tapovan Vishnugad Project Sites. J Water Resour Prot 2:636–643. https://doi.org/10.4236/jwarp.2010.27073

    Article  Google Scholar 

  • Azam MF, Wagnon P, Vincent C, Ramanathan AL, Linda A, Singh VB (2014a) Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969. Ann Glaciol 55(66):69–80. https://doi.org/10.3189/2014AoG66A104

    Article  Google Scholar 

  • Azam MF, Wagnon P, Vincent C, Ramanathan AL, Favier V, Mandal A and Pottakkal JG (2014b), Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. The Cryosphere 27;8(6), 2195–217, Doi: https://doi.org/10.5194/tc-8-2195-2014

  • Azócar GF, Brenning A (2009) Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27°-33°S). Permafrost Periglac Process 21:42–53. https://doi.org/10.1002/ppp.669

    Article  Google Scholar 

  • Bahr, D. B., M. F. Meier and S. D. Peckham (1997) The physical basis of glacier volume-area scaling, Journal of Geophysical Research, 102(B9), 20, 355–362, Doi: https://doi.org/10.1029/97JB01696.

  • Bahr DB, Pfeffer WT, Kaser G (2015) A review of volume-area scaling of glaciers. Rev Geophys 53(1):95–140

    Article  Google Scholar 

  • Baisheng Y, Yongjian D, Fengjing L, Caohai L (2003) Responses of various-sized alpine glaciers and runoff to climatic change. J Glaciol 49(164):1–7

    Article  Google Scholar 

  • Bajracharya, S. R. and B. Shrestha (2011) The status of glaciers in the Hindu Kush-Himalayan region. Kathmandu: ICIMOD, (http://lib.icimod.org/record/9419).

  • Barry RG (2006) The status of research on glaciers and global glacier recession: a review. Prog Phys Geogr 30(3):285–306

    Article  Google Scholar 

  • Bedford D, Haggerty C (1996) New digitized glacier inventory for the former Soviet Union and China. Earth Syst Monit 6(3):8–10

    Google Scholar 

  • Berthier E, Schiefer E, Clarke GK, Menounos B, Rémy F (2010) Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nat Geosci 3(2):92–95

    Article  CAS  Google Scholar 

  • Bhardwaj, A., L. Sam and F. J. Martín-Torres (2016c) Rock glaciers as proxies for identifying terrestrial and analogous Martian permafrost. Günther, F. and A. Morgenstern (Eds.) (2016): XI. International Conference on Permafrost - Book of Abstracts, 20–24 June 2016, Potsdam, Germany. Bibliothek Wissenschaftspark Albert Einstein. pp 535–537. doi:https://doi.org/10.2312/GFZ.LIS.2016.001.

  • Bhardwaj A, Sam L, Akanksha FJ, Martín-Torres, and R. Kumar, (2016b) UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sens Environ 175:196–204

    Article  Google Scholar 

  • Bhardwaj A, Sam L, Singh S, Kumar R (2016c) Automated detection and temporal monitoring of crevasses using remote sensing and their implications in glacier dynamics. Ann Glaciol 57(71):81–91. https://doi.org/10.3189/2016AoG71A496

    Article  Google Scholar 

  • Bhardwaj A, Singh MK, Joshi PK, Singh S, Sam L, Gupta RD, Kumar R (2015a) A lake detection algorithm (LDA) using Landsat 8 data: A comparative approach in glacial environment. Int J Appl Earth Obs Geoinf 38:150–163

    Google Scholar 

  • Bhardwaj A, Joshi PK, Sam L, Snehmani. (2016d) Remote sensing of alpine glaciers in visible and infrared wavelengths: a survey of advances and prospects. Geocarto Int 31(5):557–574

    Article  Google Scholar 

  • Bhardwaj A, Joshi PK, Snehmani L, Sam MK, Singh S, Singh RK (2015b) Applicability of Landsat 8 data for characterising glacier facies and supraglacial debris. Int J Appl Earth Obs Geoinf 38:51–64. https://doi.org/10.1016/j.jag.2014.12.011

    Article  Google Scholar 

  • Bhardwaj A, Joshi PK, Snehmani MK, Singh LS, Gupta RD (2014) Mapping debris-covered glaciers and identifying factors affecting the accuracy. Cold Reg Sci Technol 106–107:161–174. https://doi.org/10.1016/j.coldregions.2014.07.006

    Article  Google Scholar 

  • Bhardwaj, A., Kumar R., Sam, L. (2019). Analysing geospatial techniques for land degradation studies in Hindu Kush-Himalaya. A. Saikia and P. Thapa (eds.). Environmental Changes in the Himalayan Region. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-03362-0_6

  • Bliss A, Hock R, Cogley JG (2013) A new inventory of mountain glaciers and ice caps for the Antarctic periphery. Ann Glaciol 54(63):191–199. https://doi.org/10.3189/2013AoG63A377

    Article  Google Scholar 

  • Bliss A, Hock R, Radić V (2014) Global response of glacier runoff to twenty-first century climate change. J Geophys Res Earth Surf 119(4):717–730

    Article  Google Scholar 

  • Braithwaite RJ (1984) Short Notes: Can the Mass Balance of a Glacier be Estimated from its Equilibrium-Line Altitude? J Glaciol 30(106):364–368

    Article  Google Scholar 

  • Braithwaite RJ, Raper SC (2007) Glaciological conditions in seven contrasting regions estimated with the degree-day model. Ann Glaciol 46(1):297–302

    Article  Google Scholar 

  • Brocklehurst S, Whipple KX (2004) Hypsometry of glacierised landscapes. Earth Surf. Processes Landforms 29(7):907–926. https://doi.org/10.1002/esp.1083

    Article  Google Scholar 

  • Brozovic N, Burbank DW, Meigs AJ (1997) Climatic limits on landscape development in the northwestern Himalaya. Science 276:571–574

    Article  CAS  Google Scholar 

  • Catalogue USSR Glaciers, 1970–1978, Middle Asia and Kazakhstan. Leningrad. Hydrometeo Publisher (Russia).

    Google Scholar 

  • Cazenave, A., and R. S. Nerem (2004) Present‐day sea level change: Observations and causes, Reviews of Geophysics, 42(3).

    Google Scholar 

  • Chaturvedi RK, Kulkarni AV, Karyakarte Y, Joshi J, Bala G (2014) Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Clim Change 123(2):315–328

    Article  Google Scholar 

  • Cogley JG (2009) A more complete version of the World Glacier Inventory. Ann Glaciol 50(53):32–38. https://doi.org/10.3189/172756410790595859

    Article  Google Scholar 

  • Collier E, Maussion F, Nicholson LI, Mölg T, Immerzeel WW, Bush ABG (2015) Impact of debris cover on glacier ablation and atmosphere–glacier feedbacks in the Karakoram. Cryosphere 9(4):1617–1632

    Article  Google Scholar 

  • Farinotti D, Huss M, Bauder A, Funk M (2009) An estimate of the glacier ice volume in the Swiss Alps. Global Planet Change 68(3):225–231

    Article  Google Scholar 

  • Frauenfelder, R. and A. Kääb (2009) Glacier mapping from multitemporal optical remote sensing data within the Brahmaputra river basin, in: Proceedings of the 33rd International Symposium on Remote Sensing of Environment, Stresa, Italy, 4–8 May 2009, available at: http://folk.uio.no/kaeaeb/publications/299 R.Frauenfelder.pdf.

  • Frey H, Machguth H, Huss M, Huggel C, Bajracharya S, Bolch T, Kulkarni AV, Linsbauer A, Salzmann N, Stoffel M (2014) Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods. Cryosphere 8(6):2313–2333

    Article  Google Scholar 

  • Fujita K, Ageta Y (2000) Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. J Glaciol 46(153):244–252. https://doi.org/10.3189/172756500781832945

    Article  Google Scholar 

  • Fujita K, Sakai A (2014) Modelling runoff from a Himalayan debris-covered glacier. Hydrol Earth Syst Sci 18(7):2679–2694. https://doi.org/10.5194/hess-18-2679-2014

    Article  Google Scholar 

  • Furbish DJ, Andrews JT (1984) The use of hypsometry to indicate long-term stability and response of valley glaciers to changes in mass transfer. J Glaciol 30(105):199–211

    Article  Google Scholar 

  • Gaffey C, Bhardwaj A (2020) Applications of unmanned aerial vehicles in cryosphere: Latest advances and prospects. Remote Sensing 12(6):948

    Article  Google Scholar 

  • Gaffey CB, Bhardwaj A, Frey KE, Estes L (2022) Polar and Cryospheric Remote Sensing Using sUAS. SUAS Applications in Geography. Springer International Publishing, Cham, pp 235–261

    Chapter  Google Scholar 

  • Gardner A, Moholdt G, Cogley JG, Wouters B, Arendt A, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Martin J, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 340:852–857. https://doi.org/10.1126/science.1234532

    Article  CAS  Google Scholar 

  • Gasson, E., M. Siddall, D. J. Lunt, O. J. Rackham, C. H. Lear, and D. Pollard (2012) Exploring uncertainties in the relationship between temperature, ice volume, and sea level over the past 50 million years, Reviews of Geophysics, 50(1), RG1005, 1–35.

    Google Scholar 

  • GGI: Nuimura et al. (2015) Provided by Dr. Akiko Sakai (shakai@nagoya-u.jp), Principal Investigator of the GAMDAM project http://www.cryoscience.net/pages/gamdam.html

  • GSI: Raina and Srivastava (2008)

    Google Scholar 

  • GLIMS: GLIMS, and the National Snow and Ice Data Center [2005, updated 2012] (http://www.glims.org/maps/glims)

  • Glacier Inventory of China III (1986a) Tianshan Mountains (Ili Drainage Basin). China Science Press, Lanzhou Institute of Glaciology and Geocryology

    Google Scholar 

  • Glacier Inventory of China III (1986b) Tianshan Mountains (Interior Drainage Area of Scattered Flow in East). China Science Press, Lanzhou Institute of Glaciology and Geocryology

    Google Scholar 

  • Glacier Inventory of China III (1986c) Tianshan Mountains (Interior Drainage Area of Junggar Basin, Northwest). China Science Press, Lanzhou Institute of Glaciology and Geocryology

    Google Scholar 

  • Glacier Inventory of China III (1987) Tianshan Mountains (Interior Drainage Area of Tarim Basin, Southwest). China Science Press, Lanzhou Institute of Glaciology and Geocryology

    Google Scholar 

  • GLIMS Consortium (2005). GLIMS Glacier Database, Version 1 [Data Set]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.7265/N5V98602

  • Guo W, Liu S, Xu SJ, Wu L, Shangguan D, Yao X, Wei J, Bao W, Yu P, Liu Q, Jiang Z (2015) The second Chinese glacier inventory: data, methods and results. J Glaciol 61:357–371. https://doi.org/10.3189/2015JoG14J209

    Article  Google Scholar 

  • Hagg W, Hoelzle M, Wagner S, Mayr E, Klose Z (2013) Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya basin until 2050. Global Planet Change 110:62–73

    Article  Google Scholar 

  • Hagg W, Shahgedanova M, Mayer C, Lambrecht A, Popovnin V (2010) A sensitivity study for water availability in the Northern Caucasus based on climate projections. Global Planet Change 73(3):161–171

    Article  Google Scholar 

  • Hirabayashi Y, Zang Y, Watanabe S, Koirala S, Kanae S (2013) Projection of glacier mass changes under a high-emission climate scenario using the global glacier model HYOGA2. Hydrological Research Letters 7(1):6–11

    Article  Google Scholar 

  • Hock R (2003) Temperature index melt modelling in mountain areas. J Hydrol 282(1–4):104–115. https://doi.org/10.1016/S0022-1694(03)00257-9

    Article  Google Scholar 

  • Hock, R., M. de Woul, V. Radić, and M. Dyurgerov (2009) Mountain glaciers and ice caps around Antarctica make a large sea‐level rise contribution, Geophysical Research Letters, 36(7), L07501, 1–5.

    Google Scholar 

  • Immerzeel WW, Pellicciotti F, Shrestha AB (2012) Glaciers as a proxy to quantify the spatial distribution of precipitation in the Hunza basin. Mt Res Dev 32(1):30–38

    Article  Google Scholar 

  • ICIMOD: Bajracharya and Shrestha [2011] (http://rds.icimod.org/Home/DataDetail?metadataId=9361) (http://rds.icimod.org/dataviewer/index.html?url=http://apps.geoportal.icimod.org/ArcGIS/rest/services/Cryosphere/Glacier/MapServer/0&id=9361)

    Google Scholar 

  • Immerzeel WW, Pellicciotti F, Bierkens MFP (2013) Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat Geosci 6(9):742–745

    Article  CAS  Google Scholar 

  • Immerzeel WW, Van Beek LP, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385. https://doi.org/10.1126/science.1183188

    Article  CAS  Google Scholar 

  • Jakob M (1992) Active rock glaciers and the lower limit of discontinuous alpine permafrost. Khumbu Himalaya, Nepal, Permafrost and Periglacial Processes 3:253–256

    Article  Google Scholar 

  • Jiskoot H, Curran CJ, Tessler DL, Shenton LR (2009) Changes in Clemenceau Icefield and Chaba Group glaciers, Canada, related to hypsometry, tributary detachment, length–slope and area–aspect relations. Ann Glaciol 50(53):133–143

    Article  Google Scholar 

  • Kääb, A., R. Frauenfelder and J. A. F. Kääb (2008) Glacier distribution and glacier area changes 1960s-2000 in the Brahmaputra River basin, EGU General Assembly, Vienna, Austria, 13–18 April 2008, EGU08–A–05334.

    Google Scholar 

  • Kargel JS, Leonard GJ, Bishop MP, Kääb A, Raup BH (2014) Global Land Ice Measurements from Space. Springer. https://doi.org/10.1007/978-3-540-79818-7

  • Kaser G, Großhauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proceeding of National Academy of Sciences, USA 107(20223–20227):2010. https://doi.org/10.1073/pnas.1008162107

    Article  Google Scholar 

  • Kaul, M. K. (1999) Inventory of the Himalayan glaciers. Calcutta, Geological Survey of India. (GSI Special Publication 34).

    Google Scholar 

  • Kayastha RB, Ohata T, Ageta Y (1999) Application of a mass-balance model to a Himalayan glacier. J Glaciol 45(151):559–567. https://doi.org/10.3189/S002214300000143X

    Article  Google Scholar 

  • Kulkarni AV (1992) Mass balance of Himalayan glaciers using AAR and ELA methods. J Glaciol 38(128):101–104

    Article  Google Scholar 

  • Kulkarni AV, Karyakarte Y (2014) Observed changes in Himalayan glaciers. Curr Sci 106(2):237–244

    Google Scholar 

  • Kulkarni AV, Rathore BP, Alex S (2004) Monitoring of glacial mass balance in the Baspa basin using accumulation area ratio method. Curr Sci 86(1):185–190

    Google Scholar 

  • Kumar P, Kotlarski S, Moseley C, Sieck K, Frey H, Stoffel M, Jacob D (2015) Response of Karakoram-Himalayan glaciers to climate variability and climatic change: A regional climate model assessment. Geophys Res Lett 42(6):1818–1825

    Article  Google Scholar 

  • Kumar R, Kumar R, Singh S, Singh A, Bhardwaj A, Kumari A, Randhawa SS, Saha A (2018) Dynamics of suspended sediment load with respect to summer discharge and temperatures in Shaune Garang glacierized catchment. Western Himalaya. Acta Geophysica 66(5):1109–1120

    Article  Google Scholar 

  • Kumar R, Singh S, Kumar R, Singh A, Bhardwaj A, Sam L, Randhawa SS, Gupta A (2016) Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction. Water Resour Manage 30(10):3475–3492

    Article  Google Scholar 

  • Lambrecht A, Kuhn M (2007) Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Ann Glaciol 46:177–184. https://doi.org/10.3189/172756407782871341

    Article  Google Scholar 

  • Leclercq PW, Oerlemans J, Cogley JG (2011) Estimating the glacier contribution to sea-level rise for the period 1800–2005. Surv Geophys 32(4–5):519–535

    Article  Google Scholar 

  • Lejeune Y, Bertrand JM, Wagnon P, Morin S (2013) A physically based model of the year-round surface energy and mass balance of debris-covered glaciers. J Glaciol 59(214):327–344. https://doi.org/10.3189/2013JoG12J149

    Article  Google Scholar 

  • Li H, Xu CY, Beldring S, Tallaksen LM, Jain SK (2016) Water resources under climate change in Himalayan basins. Water Resour Manage 30(2):843–859

    Article  Google Scholar 

  • Lutz AF, Immerzeel WW, Shrestha AB, Bierkens MFP (2014) Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat Clim Chang 4(7):587–592

    Article  Google Scholar 

  • Lutz AF, Immerzeel WW, Gobiet A, Pellicciotti F, Bierkens MFP (2013) Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for Central Asian glaciers. Hydrol Earth Syst Sci 17(9):3661–3677

    Article  Google Scholar 

  • Lutz AF, Immerzeel WW, Kraaijenbrink PDA, Shrestha AB, Bierkens MFP (2016) Climate Change Impacts on the Upper Indus Hydrology: Sources. Shifts and Extremes, PLoS One 11(11):e0165630

    Article  CAS  Google Scholar 

  • Marzeion B, Jarosch AH, Hofer M (2012) Past and future sealevel change from the surface mass balance of glaciers. Cryosphere 6:1295–1322. https://doi.org/10.5194/tc-6-1295-2012

    Article  Google Scholar 

  • Meehl GA, Coauthors, (2007) The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc. 88:1383–1394. https://doi.org/10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Miles ES, Pellicciotti F, Willis IC, Steiner JF, Buri P, Arnold NS (2016) Refined energy-balance modelling of a supraglacial pond, Langtang Khola. Nepal. Annals of Glaciology 57(71):29–40. https://doi.org/10.3189/2016AoG71A42

    Article  Google Scholar 

  • Mir RA, Jain SK, Jain SK, Thayyen RJ, Saraf AK (2017) Assessment of recent glacier changes and its controlling factors from 1976 to 2011 in Baspa basin, western Himalaya. Arct Antarct Alp Res 49(4):621–647. https://doi.org/10.1657/AAAR0015-070

    Article  Google Scholar 

  • Mölg T, Maussion F, Yang W, Scherer D (2012) The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere 6(6):1445–1461. https://doi.org/10.5194/tc-6-1445-2012

    Article  Google Scholar 

  • Möller M, Schneider C (2010) Calibration of glacier volume–area relations from surface extent fluctuations and application to future glacier change. J Glaciol 56(195):33–40

    Article  Google Scholar 

  • Montgomery DB, Balco G, Willett SD (2001) Climate, tectonics and the morphology of the Andes. Geology 29:579–582. https://doi.org/10.1130/0091-7613(2001)029%3c0579:CTATMO%3e2.0.CO;2

    Article  Google Scholar 

  • Mool, P. K., D. Wangda, S. R. Bajracharya, K. Kunzang, D. R. Gurung and S. P. Joshi (2001) Inventory of Glaciers, Glacial Lakes and Glacial Lake Outburst Floods, Bhutan, International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal, 227.

    Google Scholar 

  • Moore JC, Grinsted A, Zwinger T, Jevrejeva S (2013) Semiempirical and process-based global sea level projections. Rev Geophys 51(3):484–522

    Article  Google Scholar 

  • Mukhopadhyay B, Khan A (2014) A quantitative assessment of the genetic sources of the hydrologic flow regimes in Upper Indus Basin and its significance in a changing climate. J Hydrol 509:549–572

    Article  Google Scholar 

  • Nagai H, Fujita K, Sakai A, Nuimura T, Tadono T (2016) Comparison of multiple glacier inventories with a new inventory derived from high-resolution ALOS imagery in the Bhutan Himalaya. Cryosphere 10(1):65–85

    Article  Google Scholar 

  • Nuimura T, Sakai A, Taniguchi K, Nagai H, Lamsal D, Tsutaki S, Kozawa A, Hoshina Y, Takenaka S, Omiya S, Tsunematsu K, Tshering P, Fujita K (2015) The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers. Cryosphere 9(3):849–864. https://doi.org/10.5194/tc-9-849-2015

    Article  Google Scholar 

  • Pedersen VK (2010) Alpine glacial topography and the rate of rockcolumn uplift. Geomorphology 122(1–2):129–139. https://doi.org/10.1016/j.geomorph.2010.06.005

    Article  Google Scholar 

  • Pellicciotti F, Buergi C, Immerzeel WW, Konz M, Shrestha AB (2012) Challenges and uncertainties in hydrological modeling of remote Hindu Kush–Karakoram–Himalayan (HKH) basins: suggestions for calibration strategies. Mt Res Dev 32(1):39–50

    Article  Google Scholar 

  • Pfeffer, W. T., A. A. Arendt, A. Bliss, T. Bolch, J. G. Cogley, A. S. Gardner, J. O. Hagen, R. Hock, G. Kaser, C. Kienholz, E. S. Miles, G. M. N. Molg, F. Paul, V. Radic, P. Rastner, B. H. Raup, J. Rich, M. J. Sharp, The Randolph Consortium (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol 60(221):537–552

    Article  Google Scholar 

  • Pradhananga NS, Kayastha RB, Bhattarai BC, Adhikari TR, Pradhan SC, Devkota LP, Shrestha AB, Mool PK (2014) Estimation of discharge from Langtang River basin, Rasuwa, Nepal, using a glacio-hydrological model. Ann Glaciol 55(66):223–230. https://doi.org/10.3189/2014AoG66A123

    Article  Google Scholar 

  • Prasch M, Mauser W, Weber M (2013) Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin. Cryosphere 7(3):889

    Article  Google Scholar 

  • Pratap B, Dobhal DP, Mehta M, Bhambri R (2015) Influence of debris cover and altitude on glacier surface melting: a case study on Dokriani Glacier, central Himalaya. India. Annals of Glaciology 56(70):9–16

    Article  Google Scholar 

  • Pritchard HD (2017) Asia’s glaciers are a regionally important buffer against drought. Nature 169–174. https://doi.org/10.1038/nature22062

  • Racoviteanu AE, Paul F, Raup B, Khalsa SJS, Armstrong R (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Ann Glaciol 50(53):53–69

    Article  Google Scholar 

  • RGI V5.0: RGI Consortium (2015). https://doi.org/10.7265/gq4p-zz56

  • Radić V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geosciences 4:91–94. https://doi.org/10.1038/ngeo1052

    Article  CAS  Google Scholar 

  • Radić V, Hock R (2013) Glaciers in the Earth’s hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales, In The Earth’s Hydrological Cycle (813–837). Springer, Netherlands

    Google Scholar 

  • Radić, V., and R. Hock (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. Journal of Geophysical Research: Earth Surface, 115(F1).

    Google Scholar 

  • Radok U (1997) The International Commission on Snow and Ice (ICSI) and its precursors, 1894–1994. Hydrol Sci J 42(2):131–140

    Article  Google Scholar 

  • Ragettli S, Pellicciotti F, Immerzeel WW, Miles ES, Petersen L, Heynen M, Shea JM, Stumm D, Joshi S, Shrestha A (2015) Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Adv Water Resour 78:94–111

    Article  Google Scholar 

  • Raina VK, Srivastava D (2008) Glacier atlas of India. Geological Society of India, Bangalore

    Google Scholar 

  • Raup B, Khalsa SJS (2007) GLIMS analysis tutorial. Boulder, CO, University of Colorado, National Snow and Ice Data Center, available at: http://www.glims.org/MapsAndDocs/guides.html, Accessed on: 20 October 2014.

  • Raup B, Kääb A, Kargel JS, Bishop MP, Hamilton G, Lee E, Paul F, Rau F, Soltesz D, Khalsa SJS, Beedle M, Helm C (2007) Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project. Comput Geosci 33(1):104–125. https://doi.org/10.1016/j.cageo.2006.05.015

    Article  Google Scholar 

  • RGI Consortium (2015). Randolph Glacier Inventory - A Dataset of Global Glacier Outlines, Version 5 [Data Set]. Boulder, Colorado USA. National Snow and Ice Data Center. https://doi.org/10.7265/gq4p-zz56.

  • Sakai A, Nuimura T, Fujita K, Takenaka S, Nagai H, Lamsal D (2015) Climate regime of Asian glaciers revealed by GAMDAM glacier inventory. Cryosphere 9:865–880. https://doi.org/10.5194/tc-9-865-2015

    Article  Google Scholar 

  • Salvatore MC, Zanoner T, Baroni C, Carton A, Banchieri FA, Viani C, Giardino M, Perotti L (2015) The state of Italian glaciers: a snapshot of the 2006–2007 hydrological period. Geogr Fis Din Quat 38(2):175–198

    Google Scholar 

  • Sam L, Kumar R, Bhardwaj A (2019) Glaciers as indicator of changing climate in Himalaya. A. Saikia and P. Thapa (eds.). Environmental Changes in the Himalayan Region. Springer International Publishing. https://doi.org/10.1007/978-3-030-03362-0_4

  • Sam L, Bhardwaj A, Singh S, Kumar R (2016) Remote sensing flow velocity of debris-covered glaciers using Landsat 8 data. Prog Phys Geogr 40(2):305–321. https://doi.org/10.1177/0309133315593894

    Article  Google Scholar 

  • Sam L, Bhardwaj A, Kumar R, Buchroithner MF, Martín-Torres FJ (2018) Heterogeneity in topographic control on velocities of Western Himalayan glaciers. Sci Rep 8(1):12843

    Article  Google Scholar 

  • Schmid MO, Baral P, Gruber S, Shahi S, Shrestha T, Stumm D, Wester P (2015) Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth. Cryosphere 9(6):2089–2099

    Article  Google Scholar 

  • Shea JM, Immerzeel WW, Wagnon P, Vincent C, Bajracharya S (2015) Modelling glacier change in the Everest region. Nepal Himalaya. the Cryosphere 9(3):1105–1128

    Article  Google Scholar 

  • Shekhar M, Bhardwaj A, Singh S, Ranhotra PS, Bhattacharyya A, A. K., Pal, I. Roy, F.J Martín-Torres and M.-P. Zorzano, (2017) Himalayan glaciers experienced significant mass loss during later phases of little ice age. Sci Rep 7(1):10305. https://doi.org/10.1038/s41598-017-09212-2

    Article  CAS  Google Scholar 

  • Shi Y, Liu C, Kang E (2010) The glacier inventory of China. Ann Glaciol 50:1–4. https://doi.org/10.3189/172756410790595831

    Article  Google Scholar 

  • Shrestha M, Koike T, Hirabayashi Y, Xue Y, Wang L, Rasul G, Ahmad B (2015) Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region. Journal of Geophysical Research: Atmospheres 120(10):4889–4919. https://doi.org/10.1002/2014JD022666

    Article  Google Scholar 

  • Singh P, Bengtsson L (2003) Effect of warmer climate on the depletion of snow covered area in the Satluj basin in the western Himalayan region. Hydological Sciences Journal 48(3):413–425. https://doi.org/10.1623/hysj.48.3.413.45280

    Article  Google Scholar 

  • Singh P, Jain SK (2003) Modelling of streamflow and its components for a large Himalayan basin with predominant snowmelt yields. Hydological Sciences Journal 48(2):257–276. https://doi.org/10.1623/hysj.48.2.257.44693

    Article  Google Scholar 

  • Singh P, Umesh KH, Kumar N (2008) Modelling and estimation of different components of streamflow for Gangotri Glacier basin. Himalaya. Hydrological Sciences Journal 53(2):309–322

    Article  Google Scholar 

  • Singh, S., A. Bhardwaj and R. Kumar (2016b) Implications of ignoring permafrost in glacio-hydrological models in high mountains. Günther, F. and Morgenstern, A. (Eds.) (2016): XI. International Conference on Permafrost - Book of Abstracts, 20–24 June 2016, Potsdam, Germany. Bibliothek Wissenschaftspark Albert Einstein. pp 698–699. https://doi.org/10.2312/GFZ.LIS.2016.001

  • Singh S, Kumar R, Bhardwaj A, Kumar R, Singh A (2018) Changing climate and glacio-hydrology: a case study of Shaune Garang basin, Himachal Pradesh. International Journal of Hydrology Science and Technology 8(3):258–272

    Article  CAS  Google Scholar 

  • Singh S, Kumar R, Bhardwaj A, Sam L, Shekhar M, Singh A, Kumar R, Gupta A (2016b) Changing climate and glacio-hydrology in Indian Himalayan Region: a review. Wiley Interdisciplinary Reviews: Climate Change 7(3):393–410

    Google Scholar 

  • Slangen ABA, C. A., Katsman, R. S. W. Van de Wal, L. L. A. Vermeersen and R. E. M. Riva, (2012) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38(5–6):1191–1209

    Google Scholar 

  • Small EE (1995) Hypsometric forcing of stagnant ice margins: Pleistocene valley glaciers. San Juan Mountains, Colorado, Geomorphology 14:109–121

    Google Scholar 

  • Snehmani A, Bhardwaj MK, Singh RD, Gupta PK, Joshi and A. Ganju, (2015) Modelling the hypsometric seasonal snow cover using meteorological parameters. J Spat Sci 60(1):51–64

    Google Scholar 

  • Sternai P, Herman F, Fox MR, Castelltort S (2011) Hypsometric analysis to identify spatially variable glacial erosion. J Geophyss Research: Earth Surface, 116(F3)

    Google Scholar 

  • Strahler A (1952) Hypsometric (area-altitude) analysis of erosional topography. The Geographical Society of America Bulletin 63:1117–1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Vohra CP (1980) Some problems of glacier inventory in the Himalayas, World Glacier Inventory - Inventaire mondial des Glaciers (Proceedings of the Riederalp Workshop, September 1978; Actes de l’Atelier de Riederalp, September 1978): IAHS-AISH Publ. no. 126. IAHS Publ 126:67–74

    Google Scholar 

  • Wester P, Mishra A, Mukherji A, Shrestha AB (eds) (2019) The Hindu Kush Himalaya assessment: mountains, climate change, sustainability and people. Springer Nature, Dordrecht

    Google Scholar 

  • WGMS (1989) World glacier inventory status report 1988, Edited by: W. Haeberli, H. Bösch, K. Scherler, G. Østrem, C. C. Wallén. IAHS, GEMS/UNEP, UNESCO, Switzerland

    Google Scholar 

Download references

Acknowledgements

We extend our thanks to the Contribution to High Asia Runoff from Ice and Snow (CHARIS) project, funded by the United States Agency for International Development (USAID) for financing the glacio-hydrological field work in Baspa River Basin. The present study is not a direct derivative or objective of the CHARIS project but the field work during this project increased our familiarity with the study area and we were able to take field observations and photographs for the BI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Sam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sam, L., Bhardwaj, A., Singh, S., Sam, B.C., Kumar, R. (2024). Assessing the Efficacy of Glacier Inventories to Evaluate Climate Change Impacts: Key Takeaways from Baspa River Basin. In: Sarkar, A., Bandyopadhyay, N., Singh, S., Sachan, R. (eds) Risk, Uncertainty and Maladaptation to Climate Change. Disaster Risk Reduction. Springer, Singapore. https://doi.org/10.1007/978-981-99-9474-8_6

Download citation

Publish with us

Policies and ethics