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A method has been developed to predict stress development in gray iron foundry castings. A 
new yield function, based on theoretical developments by Frishmuth and McLaughlin, tg] and on 
experiments by Coffin tl~ was implemented as a user-written element in a commercial finite 
element package. The yield function takes into account the strong dependence of the yield stress 
in cast irons on the loading path. Stresses resulting from thermal displacements in the cooling 
casting are computed using the new yield function in an elastic-viscoplastic stress analysis. In 
earlier work, techniques were developed to represent the mold in the thermal analysis by sets 
of boundary conditions on the surface of the part. For this work, a second user-written element 
was used to apply force-displacement boundary conditions on the surface of the casting to rep- 
resent the mechanical constraint of the mold. The properties for this element were based on soil 
mechanics considerations. Example problems are given, showing a substantial difference in the 
computed stresses when using the present formulation, in comparison to results obtained with 
the more usual yon Mises yield function. 

I. I N T R O D U C T I O N  

IN general, the design of a new cast part is still accom- 
plished through the time-honored method of hand-drawn 
blueprints, prototyping, and redesign. In order to reduce 
the expense of this approach, it is desirable to design 
and evaluate new products on the computer rather than 
go directly to prototype development. Part of this eval- 
uation involves simulating the heat transfer and thermal 
stress evolution as the casting solidifies and cools. 

Methods for obtaining the thermal history were the 
subject of previous work by the present authors tl-4] as 
well as many other researchers, f51 In our work, tech- 
niques were developed to eliminate solution of the heat 
transfer problem in the mold by applying instead a set 
of boundary conditions to the surface of the casting. These 
boundary conditions were selected by comparing the local 
part geometry to those precalculated and stored in a li- 
brary of candidate boundary conditions. A similar ap- 
proach was taken for the stress problem: a new boundary 
condition element was developed to provide the 
mechanical restraints normally exerted by the mold, 
eliminating the need to enmesh the mold itself. 

When computing the stresses associated with the cast- 
ing process, proper account must be taken for the 
mechanical behavior of cast iron. t6] Because the 
microstructure of gray iron consists of a matrix of steel 
containin~ flakes of graphite, the material has very dif- 
ferent properties in tension than it does in compression. 
Under compression, the flakes are held tightly closed, 
and the bulk material acts very much like steel, though 
somewhat weaker. Under tension, the flakes bear almost 
no load, reducing the effective load-bearing area and 
sometimes acting as stress concentrators. Figure 1 shows 
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the room-temperature tension and compression proper- 
ties for a typical gray cast iron. In this case, the ratio of 
compressive strength to tensile strength is approximately 
2: 1, but it is often greater and could be as high as 5:1 .t61 
This paper describes a proper representation for the yield 
surface of gray iron and methods for its incorporation 
into a finite element analysis. The formulation was in- 
corporated in a commercial code, ANSYS. t7,81 

II. METHODS AND RESULTS 

A. Cast Iron Plasticity Element 

In 1976, Frishmuth and McLaughlin examined the 
failure of cast irons by performing a limit analysis on a 
"representative volume element" of cast iron.t91 For gray 
cast iron, the representative volume element was a single 
eutectic cell, idealized as a cube with cracks (or slits) 
radiating from the center. The matrix material was as- 
sumed to follow the yon Mises yield condition, and the 
slits were assumed to be rough and to have a very small 
distance between their faces. Thus, any slit which had 
a net normal tensile force across its face could transmit 
no stress. A slit which was under compression, though, 
could transmit both normal and shear stresses. To de- 
termine the failure surface, the principal stresses were 
taken to be normal to the faces. Such behavior produces 
different behavior in different portions of stress space, 
depending on the signs of the principal stresses. 

The four domains to consider when dealing with a three- 
dimensional stress state are: the one with three tensile 
stresses (TTT), the three with two tensile and one 
compressive stress (TTC), the three with one tensile and 
two compressive stresses (TCC), and finally the one hav- 
ing three compressive stresses (CCC). Frishmuth and 
McLaughlin were able to derive mathematical expres- 
sions for the failure surfaces in each of these domains. 
In the following equations, i, j ,  and k are cyclically per- 
muted from 1 to 3, and tensile stresses are taken to be 
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Fig. 1 - - R o o m - t e m p e r a t u r e  stress-strain curves for a typical cast iron. ~sJ 

positive. The term 0-i is the average stress in any prin- 
cipal direction in the representative volume element and 
is defined as 

O" i = A m 0 -  bulk [1] 

where Am is the normalized representative volume ele- 
ment face area minus the projected area of all the slits 
onto a representative volume element face. Thus, Am is 
a dimensionless ratio of the area of slits or, in our case, 
flakes in the microstructure. The term 0-m is the yield 
stress for the matrix material (steel). 

For the pure tention (TTT) domain, they found the 
failure surface to be represented by 

02 _ ~ + 0-2 = (Am0-m)2 [2] 

For the TTC domain, there were three possible sur- 
faces, given by 

2 2 2 

o-i ~ + 0-J +o-k - o-k- = 2 o - I  [3] 

2 

_ _ _  + 0 - 2  = 0 - , .  [ 4 ]  

\ A m /  Am 
2 / \  

0 - 2 0 r k o r i  ( 0 " i ~  2 
- -  - -  "~ = O" m [ 5 ]  

Am \Am,] 

and it was assumed that the innermost (i .e. ,  that cor- 
responding to the lowest stress) was applicable in any 
particular load case. For the TCC domain, the equation 
of the failure surface was 

2 2 

- ~  + ( O - J - O - D 2 +  0-~---~-,~m 

and for the pure compression (CCC) domain, 

(o'1 - o'2) 2 + (0-z - 0-3) 2 + (0-3 - 0-|)2 = 2o-I [71 

Note that this last equation is the von Mises condition, 
corresponding to a cylinder about the (1, 1, 1) vector in 
principal stress space. 

Frishmuth and McLaughlin's t91 failure surface incor- 
porates a required feature for the cast iron yield surface: 
it allows a ratio between failure stresses in compression 
and in tension to be greater than 2:1.  It does this by 
altering the failure surface shape based on hydrostatic 
pressure. A yield surface can be formed from the failure 
surface by noting that it is common practice when work- 
ing with cast iron to assume that yielding occurs at 25 pct 
of the ultimate strength, t61 The yield surface was thus 
obtained by scaling the failure surface to approximately 
25 pct of its former size, assuming that the yield point 
under all loading conditions is proportional to the failure 
point under those same conditions. This produced a yield 
surface with a shape geometrically similar to the failure 
surface. It will be shown that this yield function, with 
slight modification, compares very well to experimen- 
tally determined yielding behavior in multiaxial loading 
tests. It should be noted that the more commonly used 
yield surface proposed by Tresca t~61 cannot allow a ratio 
of yield stress in compression to yield stress in tension 
to be greater than 2: 1, so that some new yield function 
was needed to describe the behavior of cast irons. 

The mathematical forms used by Frishmuth and 
McLaughlin t91 are not convenient for fitting to the ex- 
perimentally determined properties usually available. For 
this reason, the equations for the different portions of 
the yield surface proposed here were rewritten in forms 
which simplified fitting the yield surface to experimental 
data, while closely maintaining the shape determined by 
Frishmuth and McLaughlin. In each case, the new 
equations were written in terms of the yield for the cast 
iron in compression, O'yc, and the yield in tension, try t, 
which can be obtained in uniaxial compression or ten- 
sion experiments. This is as opposed to writing the equa- 
tions in terms of the yield stress for the matrix material, 
O-m, as done by Frishmuth and McLaughlin. Note that in 
the following equations, the numerical value for O-re should 
always be negative. 

In the TTT octant of three-dimensional principal stress 
space, the yield surface is a cube (Figure 2(a)), and the 
equation for the surface has the form 

or i = O'y, [8] 

where i = 1, 2, 3. In the TCC octants, a paraboloid of 
revolution was used to join the low yield in tension to 
the high yield in compression (Figure 2(b)). This surface 
has the form 

(0-,~ + 0-~ + 0-~) - (0-10-2 + 0-20-3 + 0-10-3) 

- -  (Ory c - -  ory t )  ( O r l  Jl- 0"  2 ~- 0 " 3 )  = --O'ycO'y t [ 9 ]  

Within the TTC octants, the yield surface was generated 
so as to smoothly join the square edge at the side 
adjacent to the TTT octant (Eq. [8]) with the parabolic 
shape on the edge adjacent to the TCC octant (Eq. [9]). 
To generate these portions of the surface, a weighting 
function (described below) was used which both ap- 
proximated Frishmuth and McLaughlin's surface and 
interpolated between the bounding octants to form the 
surfaces shown in Figure 2(c). Figure 2(d) shows the TI'C 
octant bounded by the axes o-1, 0-2, and 0-3, along with 
symbols to describe the generation of the surface. The 
load point is marked P, and the vector formed by 
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Fig. 2 - - N e w  yield surface for cast irons. Tension (positive) ends of 
the stress axes are marked with the stress component  labels. (a) the 
TTT octant; (b) the three TCC octants; the shape is a paraboloid of  
revolution; (c) the TTC octants; various points used in the inter- 
polation of the yield surface in the TTC octants; regions (I) and (II) 
are separated by a plane at equal angles to the o" t and o3 axes; (d)  the 
three TFC regions; the shape is interpolated between the paraboloid 
of the TCC regions and the cube of  the TTT octant; (e) the CCC 
region, consisting of  a truncated paraboloid of  revolution (upper part) 
and a circular cylinder (lower, von Mises); and ( f )  the assembled 
new yield surface. Axes correspond to the three principal stress 
directions. 

connecting the origin to P is marked L. The point at 
which the vector pierces the paraboloid is called a, and 
b is used to denote the point at which L pierces the ex- 
tension of  the TTT cube. The boundaries of the para- 
boloid are marked by dashed lines, and the octant is 
divided into two portions, marked (I) and (II), by a plane 
which is at equal angles to the 0-1 and 0"3 planes. 

Using this construction, the coordinates for the yield 
surface in the TTC octant are interpolated between the 
TTT and TCC values via 

O" i = W l 0 " i a  -~- W20"ib  [10] 

where i is cyclically permuted through 1, 2, 3; WI and 
W2 are weighting factors; and o'ia and o-ib are coordinates 
for points a and b, respectively. The weighting factors 
used are slightly different in regions (I) and (II). In both 
cases, the factors are based on the angle between one of  
the axes and a projection of the load vector. The term 

W~ is defined as 20/7r and W2 as 1 - W~. In region (I), 
0 is the angle between the 0-3 axis and the projection of 
the load vector onto the 0-2-o'3 plane. In region (II), it 
is the angle between the o-~ axis and the projection of 
L onto the 0-1-0-2 plane. The other TTC regions are treated 
in a similar manner, and all the TTC regions are shown 
in Figure 2(c). 

In the CCC octant, one of two functions was used, 
either the paraboloid described above (Eq. [9]) or the 
von Mises function. Figure 2(e) shows the yield surface 
in the CCC region. The paraboloid was used when the 
hydrostatic pressure exceeded 

- 2 (OrY c "4- O'yt) - -  ~v//O-2y 31- O-ycO-y ' qt_ O'y, [1 11 
3 c 

At lower values of the hydrostatic pressure, the von Mises 
yield criterion was used, having the form 

(O'1 -- 0"2) 2 ~- (0"2 --  0"3) 2 "4- (0"3 --  O"1) 2 = 20"a 2 [12] 

where 0-A is the equivalent stress computed in the normal 
manner at the hydrostatic pressure mentioned above. The 
yon Mises yield function is used in the pure compression 
region where the cast iron behaves much like steel. 

Figure 2(f) illustrates the assembled yield surface. The 
shape is similar to that obtained by Frishmuth and 
McLaughlin.t9J By writing the various surface functions 
in terms of the yield values in tension and compression, 
any gray cast iron can be represented by simply changing 
those values. Because of the way the functions are writ- 
ten, however, the absolute value of the yield in compres- 
sion must always be greater than the yield in tension. 
This condition is satisfied for all of  the irons for which 
we have found data. 

Although not explicitly mentioned above, there is a 
different yield surface for every temperature as well. It 
was assumed that the yield functions at different tem- 
peratures were geometrically similar, and the parame- 
terization of the yield surface by O-re and 0-yt allowed the 
use of relatively little input data to fully characterize the 
material. The yield values at five temperatures were en- 
tered, and yield surfaces at intermediate temperatures were 
obtained by linear interpolation between the input values. 

The yield surface is used in the analysis to apportion 
strain between elastic and plastic deformation. This is 
done by constructing an "apparent" stress-strain curve 
in the direction o f  the load vector, with the yield point 
being the intersection of the load vector with the yield 
surface at the average temperature of the element under 
consideration. The method for constructing the apparent 
stress-strain curve varies with the principal stress octant. 

Stress-strain curves for load vectors not parallel to 
principal stress directions must be constructed by inter- 
polating or extrapolating the uniaxial stress-strain curves, 
depending on which octant the load vector occupies. The 
plastic modulus was assumed to be the same in all oc- 
tants. In the TTT domain, as the hydrostatic pressure 
increases, the material yields at successively lower stress 
levels. This corresponds to moving closer to the corner 
of the TTT cube farthest from the origin. The stress- 
strain curve was constructed by translating the plastic 
portion of the pure tension curve down along the elastic 
portion until the yield point matched that required by the 
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yield surface (Figure 3). By the same token, for most of  
the CCC domain, the yield point exceeds that found in 
the uniaxial compression test. In this case, the plastic 
portion of the pure compression curve is translated up- 
ward along the elastic line until the yield is in accor- 
dance with the yield surface. 

In the TTC and TCC domains, the curve must lie 
somewhere between the uniaxial tension and uniaxial 
compression curves. The yield point computed from the 
yield surface was used as a weighting factor to inter- 
polate between the tension and compression curves. The 
value for the interpolated stress at any particular strain 
in these octants was 

(Ors - O'y,) (O'c - o',) 
o" i = + o', [13] 

( O'y c - -  O'yt) 

where o- i = the interpolated stress at a particular strain; 
o'c = the stress from the compression curve at a 

given strain; 
~r, = the stress from the tension curve at a given 

strain; 
O'ys = the yield stress computed from the yield 

surface; 
cry~ = the yield stress from the compression curve; 

and 
Oy t = the yield stress from the tension curve. 

As a result of  this procedure, the interpolated curve has 
a shape that is intermediate between the tension and 
compression curves. 

The new yield surface compares well to experimental 
data. Biaxial stress states may be achieved experimen- 
tally using tubular test specimens, with forces directed 
along the axis and internal pressure applied to provide 
hoop stresses. Figure 4 shows the new yield surface along 
with data presented by Coffin. tt~ The points in the 
compression-compression quadrant were obtained by ap- 
plying pressure to the outside of  the tubular specimen. 
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Fig. 3--Interpolation and/or extrapolation to determine the effective 
stress-strain curve in the various portions of principal stress space. 
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Fig. 4- -New yield surface compared to data obtained in biaxial tension- 
torsion experiments by Coffin. I'~ 

The agreement between the yield surface and experi- 
mental data is good and can be improved in most cases 
by slightly altering the yield points in tension and 
compression used to construct the yield surface. 

In Figure 4, it can be seen that there are small areas 
at the intersections of  the surface with the positive axes 
where the yield surface is concave. This condition is not 
strictly legal, tlu but both the areas and the magnitudes 
of  the concavity are small. The equations describing the 
surface would be much more complicated if the concav- 
ities were eliminated, and the concavity appeared not to 
affect the results significantly. 

The code necessary to implement the new yield sur- 
face was inserted into ANSYS at the point it normally 
does the property interpolation based upon temperature. 
The added code, when activated, performs both the tem- 
perature interpolation and the interpolation based on the 
yield surface and loading path described above. The ef- 
fect is to pass back to ANSYS both an "apparent" stress- 
strain curve and a plastic strain increment based on the 
new yield surface. The capacity to model creep behavior 
was unaffected by the alterations, so that viscous be- 
havior could also be included in simulations. 

Because ANSYS uses the initial stress method, tTj it- 
eration must be performed at each load step to obtain a 
solution. When using the new yield function, the me- 
chanical properties depend on both the stress state and 
the temperature, which can cause them to vary greatly 
from one iteration to the next. This effect was found to 
be somewhat detrimental to convergence, requiring more 
load steps and more iterations than were needed when 
using the von Mises yield surface. Comparisons of re- 
suits using both methods are described in Section I I - C .  

B .  B o u n d a r y  C o n d i t i o n  E l e m e n t  

In the Introduction, it was pointed out that for com- 
putational efficiency, the mold itself was not modeled, 
and so a special element was required to apply the me- 
chanical boundary conditions corresponding to defor- 
mation of the mold. In an actual casting, as the metal 
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pushes against the sand mold, it will be resisted by 
compression of the sand. As the sand is compressed, 
however, it also crushes so that it does not return to its 
former position if the casting later moves away. 

Such behavior can be represented by a two-noded fi- 
nite element with three components, shown schemati- 
cally in Figure 5: a spring to provide the resisting force 
as the sand is compressed, a gap which allows the cast- 
ing to move away from the mold without being hindered, 
and a ratchet to provide for the crushing of the sand. As 
the mold is compressed, the ratchet sets at successively 
larger displacements. Later, as the casting moves away, 
the ratchet portion remains set at its previous displace- 
ment, and the casting recedes with no resistance. If the 
casting were to later come into contact with the mold, 
the resisting force would resume at the level it attained 
when the element was previously compressed. 

As in the case of the yielding behavior of the iron, the 
sand behavior was implemented in ANSYS by altering 
an existing element, t81 The original element (STIF7) con- 
sisted of a spring and gap in series, thus containing two 
of the three components mentioned above. It had two 
nodes which define the direction of the spring force. One 
node was connected to the casting at one of the elements 
making up the model, and the other node was usually 
fixed to a reference point in space. 

The ability to model gap formation without spring-back 
was added to this element by storing the largest negative 
displacement between the nodes of each boundary ele- 
ment in a separate variable. In subsequent load steps, a 
resisting force is generated only when the computed neg- 
ative displacement exceeded the previously stored value. 
Thus, in the new formulation, the stored values were 
used as an offset when calculating whether or not the 
gap was open. 

C. Example Problem 

The example problem comprised the freezing of a 
dumbbell shape. Symmetry allowed the model to contain 
only a small portion of the entire geometry. The dumb- 
bell was cut at the center of the handle, and a small slice 
in the azimuthal direction was taken from the half- 
geometry. The handle radius was 15 ram, the handle half- 
length was 50 ram, the head diameter was 65 ram, and 
the head length was 30 mm (Figure 6). 

The composition of the cast iron is listed in Table I ,  [41 

and the thermal properties used are listed in Table II 
(adapted from Reference 12). The cast iron freezes over 
the range of  t145 ~ to 1136 ~ and the (initial) pour- 
ing temperature was 1350 ~ Note that the thermal con- 
ductivity (in Table II) at high temperatures was raised to 

Fig. 5 - -Schemat i c  representation of  new mechanical boundary con- 
dition element. Casting is on the left; the right side is fixed. 

(a) 

(b) 

2 Ix~ ,  

/ 
' " i l  ! ~, 
/I \ 

; qH q < :,, 
Fig. 6--(a)  Geometry and (b) finite element mesh for the dumbbell 
example problem. (c) The model is one element thick, corresponding 
to 10 deg. 

simulate the effect of convection in the liquid portions 
of the casting. The thermal expansion coefficients of 
Table II were derived from the density data. An impor- 
tant point to note from the thermal expansion data of 
Table I~ is that there is a volume increase associated with 
falling temperature during the eutectoid transformation 
(731 ~ to 723 ~ This fact can have a profound effect 
on the stress fields that develop, including a reversal of 
sign of principal stresses. This moves the material re- 
sponse from one octant to another in principal stress space, 
greatly changing its behavior. 

The geometry and mesh for this example were gen- 
erated within ANSYS. The thermal analysis is not de- 
pendent upon the stress history in this kind of casting, 
so the thermal and stress analyses were run in sequence. 
As the thermal analysis ran, the computed temperatures 
at the various time-steps were written to a binary file 
(FILE4), and the stress analysis read back the temper- 
ature data stored in FILE4 to compute thermal stresses. 
The time data were used to compute stress relaxation. 

Two stress analyses were performed, an elastic- 
viscoplasfic analysis using avon  Mises yield surface based 
on the tensile yield stress and an elastic-viscoplastic 
analysis utilizing the new yield surface. In both cases, 
72 load steps were used, Poisson's ratio was 0.3, and 
the reference temperature for the thermal expansion 
coefficients was 1350 ~ 

Bilinear approximations were used for the stress-strain 
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Table I. Composition of Iron Used in the Example Problem 

C S Si Cu Ni Mn Cr P A1 

3.45 0.064 1.33 0.11 0.088 0.42 0.058 0.012 0.003 

curves for the von Mises yield surface, and a kinematic 
hardening rule was applied in both the old and new 
methods. These properties were adapted from 
Reference 13. It was found in the stress analysis that at 
high temperatures, the liquid material had to have some 
strength for the solutions to converge. As shown in 
Table III,  even at the highest temperature, the cast iron 
was assumed not to yield until stressed to 1 MPa. The 
curves were defined for ANSYS by entering a temper- 
ature for the curve, a yield stress (the strain is computed 
from the Young's  moduli of  Table II), and a tangent 
modulus (set equal to 25 pct of  the Young's  modulus). 
Smaller values for the tangent modulus also created con- 
vergence problems. The new modifications to the stress 
element require input of  the stress-strain properties as 
five curves for the tension domain and five curves for 
the compression domain, each having five segments and 
each at a different temperature. These data are shown in 
Table IV (adapted from Reference 13). 

ANSYS has several creep equations available. ]7[ The 
primary creep equation chosen for the example problem 
was (in incremental form) 

/~Ecr ~- A00~tCe-~ At [14] 

and the secondary creep equation was 

A•cr -~- E00Fe -a/r At [15] 

where 00 is the equivalent stress, t is time, e is the base 
for natural logarithms, and T is the absolute temperature. 
The values for the constants A through G, shown in 
Table V, were chosen by referring to Figure 53 of 
Reference 6 (not included in this paper), which gives the 
creep behavior of a class 40 cast iron under various stresses 
and a temperature of 500 ~ Variation of creep behavior 
with temperature (the values for constants D and G) was 
taken to be the same as that of  304 stainless steel. [14] 

The spring stiffness for this model was assumed to be 
1000 MPa, corresponding to the stiffness of  the cast iron 
just after solidification. This stiffness was multiplied by 
the area associated with each surface node to determine 
a unique spring force for each boundary condition ele- 
ment. This number was an estimate, based on the ulti- 

mate strength for foundry sands. [6.15] The displacements 
normal to the symmetry surfaces of  the dumbbell model 
were set to zero. 

Especially with three-dimensional models, the issue of 
how to present the results of  an analysis arises. One 
method of collapsing the stress state of  any point down 
to one number is to plot a stress ratio based on the prin- 
cipal stresses. In the following figures, the stresses are 
represented as a ratio between a principal stress and a 
yield stress. For each element, the two quantities 001/O'y, 
and 003/00yc are formed, where o~ is the first (maximum 
tensile) principal stress, 003 is the magnitude of the min- 
imum principal stress (compressive stress with greatest 
magnitude), O-y, is the yield stress in tension at the current 
temperature, and O-yc is the magnitude of the yield stress 
in compression at the current temperature. In all cases, 
the maximum of the two quantities is plotted, rather than 
any particular stress component. 

Figures 7(a) and (b) show the results of the analyses 
for times of 560 and 1440 seconds, corresponding to states 
just after solidification and immediately after the eutec- 
toid transformation, respectively. In each case, window 1 
shows the temperature, window 2 shows the stresses 
computed using the new yield surface, and window 3 
shows the corresponding stresses using the von Mises 
yield surface. Figures 8 and 9 compare computed stress 
ratio histories at two locations in the dumbbell, com- 
puted using the two yield functions. The figures clearly 
show that the maximum stress ratios achieved, and the 
times at which they were reached, were very different 
when using the two methods. The computing times 
(Sun 3/280 with floating point accelerator (FPA)) for 
the different phases of  the analysis were 6320 seconds 
for the thermal analysis, 46,290 for the old method (in- 
cluded a restart, so time was greater than necessary), and 
36,406 for the new method. 

I I I .  D I S C U S S I O N  

In window 2 of Figure 7(a), the analysis using the new 
yield surface, there are two areas with a stress ratio above 
3.0. These points would be very likely to fail in an actual 

Table II. Thermal Properties of the Cast Iron Used in the Example Problem 

Temp. (~ c e (J /g K) ti (1/~ Temp. (~ k (W/mm K) Temp. (~ p (kg/mm 3) Temp. (~ E (MPa) 

25.0 0.540 1.525 • 10 -5 27.0 0.07693 25.0 7.220 • 1 0  - 3  25.0 1.96 x 104 
723.0 0.732 1.753 • 10 -5 328.0 0.04566 599.4 7.053 X 10  -3  200.0 1.72 X 1 0  4 

723.5 10.860" 1.755 x 10 -5 717.0 0.03530 694.4 7.077 • 1 0  - 3  657.0 6.00 • 1 0  3 

731.5 10.860" 2.231 x 10 -5 1135.0 0.02000 794.4 7.034 • 1 0  - 3  815.0 3.00 X 1 0  3 

732.0 0.6400 2.232 x 10 -5 1140.0 0.01400 911.3 7.006 • 1 0  - 3  1136.0 1.00 X 1 0  3 

1136.0 0.7000 2.922 x 10 -5 1250.0 0.01680 1144.4 6.923 • 10 -3 - -  - -  
1136.5 31.10 4.929 x 10 -5 1300.0 0.02716 1155.8 6.995 X 1 0  - 3  - -  - -  

1144.5 31.10 1.00 x 10 -1~ 1350.0 0.09240 1177.5 6.960 • 10 -3 - -  - -  
1145.0 0.9175 - -  1375.0 0.18900 1199.2 6.919 • 1 0  - 3  - -  - -  

1400.0 0.9073 - -  1400.0 0.28000 1349.6 6.800 • 1 0  - 3  - -  - -  

*Heat of transformation taken from 1086 steel in Reference 12. 
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Table III .  Mechanical Properties Used for Table V. Creep Constants Used in the Simulations 
the Stress Analysis with Von Mises Yield Function 

Temperature Yield Stress Tangent Modulus 
(~ (MPa) (MPa) 

25.0 49.0 4900.0 
200.0 43.0 4300.0 
675.0 12.0 1500.0 
815.0 3.0 750.0 

1136.0 1.0 250.0 

Constant Value 

A 6.294 • 10 -4 MPa -B s -c-1 
B 1.5 
C -0 .6  
D 5000 K 
E 6.124 • 10 -8 MPa -F s -1 
F 2.0 
G 5000 K 

casting. On the other hand, in window 3, corresponding 
to the analysis using the von Mises yield function, no 
stress ratio exceeds about 1.5, a perfectly acceptable level 
of stress. These results are important because it is at high 
temperatures that hot tears occur, and including a more 
physically representative model for the material behavior 
results in a completely different conclusion about the 
manufacturability of  the designed part. 

At a later time (Figure 7(b)), the computed stress ra- 
tios are actually lower when using the new method, al- 
though neither method predicts stress ratios that are unduly 
large. This reversal in stress levels is due to the fact that 
the higher stresses and greater strength in compression 
allowed in the new method analysis produced more plas- 
tic and creep flow in the shaft at high temperatures. Later, 
as the temperatures fell, less stress developed in the shaft 
because of its slightly greater length. At times greater 
than 1440 seconds, the stresses once again became higher 
for the new method, but the difference between the two 
methods was small. 

The time dependence of the stress development, shown 
in Figures 8 and 9, also merits some discussion. Point 1 
is in the high-stress area near the handle-head joint 
(Figure 8), and point 2 is on the axis at the center of  the 
handle, another high-stress area. During the eutectoid 
transformation (approximately 960 to 1440 seconds) and 
immediately after, the old method stress ratios are larger 
than the new method values, as discussed above. At the 

time of shaking out from the mold (2560 seconds), the 
stresses are again higher for the new method. Note that 
the stresses at this point are those which exist in the cast- 
ing prior to its removal from the mold. To determine the 
residual stresses outside the mold, the spring constants 
for all the mechanical boundary elements would be re- 
duced to zero, and the temperature would be allowed to 
fall to ambient levels. 

Two other dumbbell analyses were run, though the re- 
suits are not presented here. One used a simple spring 
element to apply the mechanical boundary conditions, 
and the other used the new boundary condition element 
but with a sand stiffness of only 500 rather than 1000 MPa. 
The first run, using the simple spring boundary condi- 
tions, gave stress results that were virtually identical to 
the run using the new boundary condition element. This 
was encouraging, because the gap components of  the ac- 
tive elements, those on the inside faces of  the dumbbell 
head, stayed closed for the most part. Thus, the behavior 
of the important boundary condition elements should have 
been, and was, very much like that of simple spring 
elements. 

The results of  the second run, with a sand stiffness of 
500 MPa, were surprising at first, since these stresses 
were also very much like the stresses of  the 1000 MPa 
case. It was realized, however, that both 500 and 
1000 MPa are probably stiffer than most foundry sands. 
In both cases, the stress state in the casting was pushed 

Table IV. Mechanical Properties Used for the Stress Analysis with New Yield Function 

Tension Curves 

25 ~ 200 ~ 675 ~ 815 ~ 1136 ~ 

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress 
(Pct) (MPa) (Pct) (MPa) (Pct) (MPa) (Pct) (MPa) (Pct) (MPa) 

0.25 49.00 0.25 43.00 0.20 12.00 0.10 3.00 0.10 1.00 
0.91 95.05 0.91 83.41 0.73 23.28 0.36 5.82 0.36 1.94 
2.74 127.3 2.74 111.7 2.19 31.18 1.10 7.80 1.10 2.60 
6.06 138.6 6.06 121.7 4.85 33.95 2.43 8.49 2.43 2.83 
1.13 142.2 1.13 124.8 9.03 34.83 4.51 8.71 4.51 2.90 

Compression Curves 

25 ~ 200 ~ 675 ~ 815 ~ 1136 ~ 

Strain Stress Strain Stress Strain Stress Strain Stress Strain Stress 
(Pct) (MPa) (Pct) (MPa) (Pct) (MPa) (Pct) (MPa) (Pct) (MPa) 

0.75 147.0 0.75 129.0 0.60 36.00 0.30 9.00 0.30 3.00 
1.90 232.0 1.90 203.6 1.52 56.82 0.76 14.21 0.76 4.74 
4.15 302.9 4.15 265.8 3.32 74.19 1.66 18.55 1.66 6.18 
7.63 357.6 7.63 313.8 6.10 87.57 3.05 21.89 3.05 7.30 

14.18 407.6 14.18 357.7 11.34 99.81 5.67 24.95 5.67 8.32 

METALLURGICAL TRANSACTIONS A VOLUME 21A, FEBRUARY 1990--495 



V \ 
_ 937 

962~, 
I - 987 

_ . ~ 0 1 2 . . . ~  

/ 1o37 
1037 8 (  l i l ]  2 
I 

Temperatures 
560 seconds 

Stress ratios - New yield surface 

J5 

Stress ratios -von Mises 

(a) 

L_ ST  
~ 7 1 2 ~  

Temperatures 
1440 seconds 

f l  

~ - ' x 0 .  5 

1 .o -  -//~, 
Stress ratios - New yield surface 

_ _  

~ 0 . 5  

1.0 ~ --1.0 "~ ~ l . 0 - T X ~  

//  /-1.5 

Stress ratios - von Mises 

(b) 

Fig. 7 - - T h e r m a l  and elastic-viscoplastic stress results for the dumbbell- 
shaped example problem. Window 1 shows temperatures (legend is 
above right). Window 2 shows new method stress ratios, and window 3 
shows old method stress ratios. (a) Solution 560 s after pouring (just  
after solidification) and (b) solution 1440 s after pouring (immediately 
after the eutectoid transformation). 

up onto the fiat portion of the stress-strain curve. Under 
those circumstances, stresses could be relieved through 
plastic strain without causing the buildup of additional 
stress. 

It would be ideal if experimental results were available 
to compare to these stress computations. Unfortunately, 
little detailed residual stress data exist for cast iron. One 
reason for this is the simple fact that it is very difficult 
and expensive to measure residual stresses with any de- 
gree of accuracy. X-ray methods yield good results, but 
only for a very thin layer of material at the surface. 
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3 -- 

2 - 

0 ~ I I I 1 I 
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Fig. 8 - -  Time histories of  max imum computed tensile principal stress 
divided by yield stress at location 1 in the model, using two different 
yield functions. 

Methods are available which involve placing strain gages 
on the surface and drilling a hole to relieve stresses. The 
displacements measured by the gages can then be related 
to the stresses that existed before the hole was drilled, 
provided the stress-strain relationship is accurately known. 
Another possibility is to place strain gages around the 
area of interest and then to physically cut the object. 
Again, the strains can be related to the original residual 
stresses with a known stress-strain relation. These last 
two methods involve averaging of the residual stresses 
over somewhat indeterminate volumes, while the first 
method examines a very small portion of the object. Both 
extremes make it difficult to match the measurements to 
the finite element predictions. 

An approach that is being taken at Deere and Company, 
Moline, IL, is to design a casting with a relatively sim- 
ple geometry which lends itself to the specific purpose 
of measuring residual stresses. The casting consists of a 
ring of rectangular cross section and a cross bar, having 
the overall shape of the Greek letter theta. The intention 
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Fig. 9 - - T i m e  histories of  max imum computed tensile principal stress 
divided by yield stress at location 2 in the model,  using two different 
yield functions. 
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is that the ring will cool much faster than the bar at the 
center and yield plastically. When the bar later freezes, 
it will be in tension. The bar can be cut and reference 
points on its surface measured to yield a displacement 
which could be related to the average residual stress in 
the bar. 

IV. CONCLUSIONS 

Because of its radically different behavior in tension 
and compression, the stress-strain response of gray cast 
iron is very difficult to model. A new constitutive model 
for gray iron, which expands upon previous work and is 
easily incorporated into any finite element package, was 
presented. 

An example problem was given to compare the com- 
puted stresses using the new yield surface to those com- 
puted using a yon Mises yield surface. Creep deformation 
was also included. Comparison of the calculations for 
experimental results would be useful, but no such results 
are available at this time. 
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