NASA-CR-174646

National Aeronautics and Space Administration

EXTENDED PARAMETRIC REPRESENTATION OF **COMPRESSOR FANS AND TURBINES**

Volume II - PART User's Manual

FINAL REPORT

March 1984

By **General Electric Company Aircraft Engine Business Group** Advanced Technology Programs Cincinnati, Ohio 45215

FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LEWIS RESEARCH CENTER 21000 BROOKPARK ROAD **CLEVELAND, OHIO 44135**

> Contract NAS3-23055

GENERAL 🐲 ELECTRIC

Aircraft Engine Business Group Advanced Technology Programs Department Cincinnati, Ohio 45215

۲d

ENDE

NASA-CE-174646

URBINE

EPA

83

Ľ4

La]

98

oct.

98

186-2393

R84AEB379

53/37

Q

ORIGINAL PAGE IS

······	· · · · · · · · · · · · · · · · · · ·		
1. Report No. NASA_CR-174646	2. Government Accession No.	3. Recipient's Catalog No.	
4 Title and Subtitle	I	6 Becort Dute	
Extended Parametric Representat	ion of Compressors Fans	Marsh 1004	
and Turbines Vol. II - PART US	ER's Manual (Parametric Turbine)	March 1984	
		6. Performing Organization Code	
7. Author(s)		8. Performing Organization Report No	D
G.L. Converse		R84AE B379	
		10 Work Hout No	
9. Performing Organization Name and Address			
Conomal Electric Company			
Aircraft Engine Business Group		11. Contract or Grant No.	
Cincinnati, Ohio 45215		NAS3-23055	
		13. Type of Report and Period Cover	ed
12. Sponsoring Agency Name and Address		Contract Report	
	• • • • • • • •	August 1982 - October 19	83
National Aeronautics and Space .	Administration	14. Sponsoring Agency Code	_
Washington, D.C. 20546			
15 Supplementary Notes			
Drojoct Managan James 1/ Court			
Project Manager, James W. Gaunti	er, Aerospace Engineer, NASA		
Lewis Research Center, Cleveland	, Unio		
16. Abstract			
A turbine modeing technique has	been developed which will anable	the user to obtain consistent a	nd
rapid off-design performance from	n desian point input. This techn	que is applicable to both axial	
and radial flow turbine with flow	w sizes ranging from about one po	und per second to several hundr	red
pounds per second. The axial flow	w turbines may or may not include	variable geometry in the first	
stage nozzle. A user-specified o	ption will also permit the calcul	ation of design point cooling f	low
levels and corresponding changes	in efficiency for the axial flow	turbines. The modeling technia	ue
nas been incorporated into a tim	e-snaring program in order to fac	voical inputs and example case	re-
it is suitable as a user's manual	This report is the second of a	three volume set. The titles o	is, if
the three volumes are as follows			
(1) Volume I Cl	1GEN USER's Manual (Parametric Co	mpressor Generator)	
(2) Volume II P/	ART USER's Manual (Parametric Tu	bine)	
(3) Volume III M	DDFAN USER's Manual (Parametric M	odulating Flow Fan)	
			į
17. Key Words (Suggested by Authorial)	18 Dieteihungen Santa	mant	-
Parametric Turbines	Te. Distribution State		
Off-Design Performance			
Axial and Radial Flow			
19. Security Classif, (of this report)	20. Security Classif. (of this page)	21. No. of Pages 22. Price*	
Unclassified	Unclassified	55	

•

.

f

•

.

TABLE OF CONTENTS

Section		Page
1.0	INTRODUCTION	1
2.0	PROGRAM STRUCTURE	5
3.0	PROGRAM INPUTS	7
4.0	PROGRAM OUTPUTS	16
5.0	PROGRAM DIAGNOSTICS	17
6.0	EXAMPLE CASES	19
7.0	ANALYTICAL BACKGROUND	32
	 7.1 Turbine Map Representation 7.2 Turbine Flow Model 7.3 Turbine Loss Model 7.4 Comparison of Radial Turbine Test Results with Program Output 	32 32 37 43

LIST OF S	SYMBOLS		
REFERENCE	ES		

PRECEDING PAGE BLANK NOT FILMED

PAGE I INTENTIONALLY BLANK

49

50

iii

.

LIST OF ILLUSTRATIONS

.

Figure		Page
1.	Flow Chart Showing Flow of Control in Parametric Turbine Program.	6
2.	Input to First Example Case.	9
3.	Input to Second Example Case.	11
4.	Turbine Flow Representation.	33
5.	Turbine Efficiency Representation.	35
6.	Comparison of Measured and Calculated Values of Inlet Turbine Flow Function.	38
7.	Comparison of Measured and Calculated Values of Total-to-Total Efficiency.	42
8.	Radial Turbine Performance Map.	45
9.	Radial Turbine Swirl Map.	46
10.	Radial Turbine Flow Comparison.	47
11.	Radial Turbine Efficiency Comparison.	48

PRECEDING PAGE BLANK NOT FILMED

v

ς.

PAGE HITEWROMANLY TLANK

LIST OF TABLES

<u>Table</u>		Page
Ι.	Summary of Turbine Design Point Data	2
11.	Summary of Variable Geometry Turbines Included on Data Base	3
III.	Default Settings for Variables in Namelist "INPUT"	8
IV.	Variable Settings to Trigger Default Cal- culation of Some Design Point Input	14
ν.	Default Settings for Variables in Namelist "INPUT 1"	14
VI.	Design Point Data - INFLOW Radial Turbine	44

.

1.0 INTRODUCTION

The NASA Lewis Research Center employs a general computer program (Reference 1) for calculating the thermodynamic performance of jet propulsion engines. To calculate off-design engine performance, the user must input component maps. These maps define the characteristics of the various components over their full range of operating conditions.

For advanced propulsion systems these characteristics are not generally known. Furthermore, the typical user of the program is not sufficiently knowledgeable and/or cannot afford the time to do an extensive design analysis of the component in question. Instead he usually scales some available map.

The objective of the study is an improved method of representing the turbine component when performing calculations of off-design performance for advanced airbreathing jet engines. This method, which is a computer program called PART, is compatible in both form and format with the cycle program of Reference 1 and the example map representation of Reference 2.

The current program is a follow-on to NASA Contract NAS3-21999. Under the original contract an axial flow turbine model for large flow size machines was developed. Under the current contract, the model was extended to include both small axial flow turbines (i.e., flow sizes down to about 1 pps), and small fixed geometry uncooled radial flow turbines.

Because this report contains a description of the input-output data, values of typical inputs, and sample cases, it is suitable as a user's manual. A brief description of the engineering analysis used to generate the program is given near the end of the report.

The program uses turbine design point data as input to generate off-design values of turbine flow-function and total-to-total efficiency over a range of pressure ratios and speeds specified by the user. A user-specified option will also permit calculating design point cooling flows for the axial flow machines, and the corresponding change in turbine efficiency. The cooling flow subroutine, developed at the Lewis Research Center, is described in Reference 3.

-

۱

•

No.	Data Base Name*	No. of Stages	DHQTD **	TFFD**				
- 1	HPT1-1	1	0.0596	14.6				
2	HPT1-2	1	0.0705	16.4				
3	HPT1-3	1	0.0335	88.5				
4	HPT2-4	2	0.0670	17.3				
5	HPT2-5	2	0.0787	32.4				
6	HPT3-6	3	0.0810	45.5				
7	LPT1-1	1	0.0220	45.0				
8	LPT1-2	1	0.0425	45.0				
9	LPT2-3	2	0.0571	58.5				
10	<u>LPT2-4</u>	2	0.065	60.4				
11	LPT4-5	4	0.0665	106.0				
12	LPT4-6	4	0.0709	134.4				
13	LPT6-7	6	0.0814	104.9				
14	PT3-1	3	0.0800	210.0				
15	AT3-1	3	0.0590					
16	AT3-2	3	0.0785					
17	AT3-3	3	0.0635	43.16				
18	AT4-4	4	0.0499	38.85				
19	VATI-1	1	0.044	99.0				
20	VAT1-2	1	0.060	60.0				
21	VAT1-3	1	0.0238	290.0				
22	VAT1-4P	1	0.0328	61.8				
23	VAT1-4X	1	0.0328	61.8				
24	VAT2-5P	2	0.0636	61.8				
25	VAT2-5X	2	0.0636	61.8				
*HPT - High Pressure Turbine LPT - Low Pressure Turbine PT - Power Turbine								
AT	- Air Turbine Test H	Rig						
VAT - Variable Area Turbine								

Table I. Summary of Turbine Design Point Data.

** Symbols defined in Table III.

2

2

.

Turbine No.	Designation	No. of Stages		First S	tage Noz Z	zle Area	Ratios	
1	VAT1-1	1	50.0	62.5	75.0	87.5	100.0	
2	VAT1-2	1	71.0	86.0	100.0	109.0	120.0	
3	VAT1-3	1	76.0	84.0	9 2.0	100.0	108.0	116.0
4	VAT1-4P	1	70.0	100.0	130.0	-		
5	VAT1-4X	1	70.0	100.0	130.0	·		
6	VAT2-5P	2	70.0	100.0	130.0			
7	VAT2-5X	2		100.0				

 Table II.
 Summary of Variable Geometry Turbines

 Included on Data Base.

- ----

,

.....

The Aircraft Engine Group of the General Electric Company has a turbine data base consisting of 25 turbines having design point turbine flow functions ranging from about 14 to 290. The number of stages for each of these turbines together with the approximate design point values of specific work output divided by inlet total temperature (DHQTD) and flow function (TFFD) are summarized in Table 1. The last sevel turbines shown in the table are variable-geometry turbines. Table II shows the set of first stage nozzle area ratios for each of the seven variable-geometry turbines. Five of these variable-geometry turbines were generated by turbine design and off-design computer programs similar, if not identical, to that described in Reference 4. Two of the turbines shown in Table II were generated from air turbine test carried out by the Lewis Research Center. The results of these tests are given in References 5 to 8. The Table II designation of the NASA test turbines have been given a trailing X. The analytical prediction of the performance of these turbines obtained from Reference 9 has been a trailing P.

All of the turbines in data base discussed above are of the large axial-flow type. In order to obtain data for small axial-flow turbines and radial flow turbines the open literature was used. References 13 thru 17 give the references used for small axial flow turbines. References 18 thru 24 give those for radial turbines.

OPINITUR DI MITS OF PODI QUALIT

2.0 PROGRAM STRUCTURE

A flow chart showing the flow of control in the NASA parametric turbine program is shown in Figure 1. After the input has been read and processed, the program carries out a simple pitch line analysis starting with the last stage of the turbine. The analysis starts at the exit of the turbine stage (in order to avoid iteration) and calculates the bucket and nozzle flow angles. This stage geometry is then used to generate the stage flow and loss characteristics using the analytically based correlations developed during the program. Successive stages are then calculated until the first stage is reached. The first stage characteristics are then generated, and the stages stacked for each value of the first stage turbine nozzle area specified. If the turbine is cooled, then the procedure given in Reference 3 is used to calculate both the cooling flow requirements, and the cooled turbine efficiency. Finally, the output is processed to obtain a turbine map representation compatible with the cycle deck of Reference 1.

Figure 1. Flow Chart Showing Flow of Control in Parametric Turbine Program.

3.0 PROGRAM INPUTS

All of the PART inputs are of the free-field format (NAMELIST) type, and begin in column two. There is no specified order to the inputs. The program initially lists the contents of the NAMELIST INPUT together with the default settings of all the input variables. The user may then change as many of the inputs as desired. The program then echoes the updated NAMELIST. If none of the inputs are changed, the program will execute the first example case and the user can inspect the output. The input variables together with the default settings for a turbine are summarized in Table III.

The first six input variables in Table III are used to control the number and values of speed, pressure ratio, and nozzle area ratios (transformed into nozzle angle) to be written on the output files. For example, in the input to the first example case shown in Figure 2, all of the corrected speed and pressure ratio arrays are used by the program, but only the first three positions in the area ratio array. Note that speeds and pressure ratios are entered in increasing value, but that area ratios are entered in decreasing value (this is so that the nozzle angles will be written in increasing order on the output file). Speeds less than 10% should not be used. The input to the second example case shown in Figure 3 illustrates the use of the first six variables to limit the size of the output files.

Some of the design point inputs will be calculated internally by the program, if the user inputs the correct value to trigger the calculation. This subset of inputs together with the required settings are summarized in Table IV. An input value equal to or less than zero will trigger all of the calculations with the exception of exit swirl angle, here a value greater than 90 degrees must be input (180 degrees is recommended).

A minimum set of design point input would consist of NSTG and DHQTD. The values of TFFD and XNRTD could be input as 100.0 and the resulting values of TFFD interpreted as percent. The user could then use the settings in Table IV to trigger program calculations of the remaining design point information. The use of the program to calculate the number of stages will frequently result in a single-stage turbine, since the only upper limit on turbine radius is the limiting value of rim speed. This is not usually sufficiently restrictive to require the use of additional stages.

If the user wishes the program to calculate the value of design point cooling flow, and the corresponding decrease in turbine efficiency, the JCOOL switch in the NAMELIST INPUT should be set to 1. The program will then list the contents of the NAMELIST INPUT1 together with the default settings of all the variables. The user may then change as many of the inputs as desired. Since the default settings of the NAMELIST INPUT are for an uncooled turbine, these inputs (namely, TTIN, PTIN) must be changed in order to successfully calculate cooling flows. The input variables for NAMELIST INPUT1 together with their default settings are summarized in Table V. The input to the second example case shown in Figure 3 illustrates the proper format for a cooled three-stage turbine.

Table III. Default Settings for Variables in Namelist "Input."

Variable Name	Unite_	Default Values (Axial Turbine) Description
RSPDS	None	15	Number of Speed Lines Desired
APCNC(1)	None	10% to 150%	The Array of Percent Corrected Speeds (Max of 15)
NPR	None	20	Number of Pressure Ratios Desired
APR(1)	None	1.1 to 4.6	The Array of Pressure Ratios (Max of 20)
NAR	None	3	Number of First Stage Nozzle Area Ratios
ARN	None	1.3, 1.0, 0.7	Array of Nozzle Area Ratios (Max of 6)
NSTG	None	1	Number of Turbine Stages (Max of 6)
JCOOL	None	0	Cooling Flow Switch (D=Uncooled; 1=Cooled)
DHQTD	Btu/1bm *R	0.03278	Specific Work Output Divided by Inlet Temperature
ETATTD	None	0.923	Turbine Total-to-Total Efficiency
TFFD	<u>1bm •R1/2</u> sec*psi	62.98	Turbine Inlet Flow Function, i.e., (TFF = $W/T_t/P_t$)
XNRTD	rpm/*R ^{1/2}	193.52	Turbine Corrected Speed (XNRT = $N/\sqrt{T_t}$)
PSID	None	0.8511	Average Turbine pitch line loading, 1.e., PSID = $(DHQT/[2(U/\sqrt{T_t})^2/g_0J]/NSTG$
ANGSWX	Degrees	15.2	Exit Pitch Line Swirl Angle (Positive When Opposite to Direction of Rotation)
XMZXD	None	0.373	Exit Pitch Line Axial Mach Number
TTIN	* R	518.67	Turbine Inlet Total Temperature
PTIN	psia	14.696	Turbine Inlet Total Pressure
FARGD	None	0.0	Turbine Inlet Fuel-Air Ratio
ETAN	None	.94	Nozzle Efficiency (Ratio of Exit Actual to ideal
D20D2	Nego	1.0	Kinetic Energy) Pitch Line Radius Ratio (Rotor Exit to Inlet)
KJUKZ	None	733	Radius Ratio at Rotor Exit (First Guess)
KHURT3	NODE		

•

-

ORIGINAL PROF 18 OF POOR QUALITY

	PAR	AMETRIC TURBINE	*************	••		
P * A * R * T						
AXIAL OR F	RADIAL TURBI	NE? 1=RADIAL,	8 OR CR-AXIAL			
DESCRIPTIC (NAMELIST	DN OF INPUT Input)	VARIABLES IN P/	ART PROGRAM			
UFITSITTI	N=DEG R,PTIN	-PSIA,W=PPS,H=I	BTU/LBM,N-RPM			
MAP RANGE	ARRAY VALUE	S MUST BE IN A	SCENDING ORDER)			
NSPDS =15	NO OF SP	EEDLINES DESIR	EU(MAX=13)			
APCNC	ARRAY OF	PERCENT CORREC	CTED SPEEDS			
NPR =2#	NG OF PR	ESSURE RATIOS	DESIREDIMAX=2#1			
APR	ARRAY OF	PRESSURE RATIO				
NAR #6	NO OF NO	ZZLE AREA RATIO	DS(MAX#6)			
ARN	ARRAY OF	FIRST STAGE N	DZZLE AREA RATIUS	•		
NSTG =6	NO UF TU	REINE STAGES(M	AX=6)			
INTEGER S	WITCHES	OUL CUITCH/ ANH	NCOOLED 1=COOLED)			
JEOOL -M	COULING P	FOM PALICHUM-0				
		c .				
DESIGN PO	INT VALUES C	TINDE CHTRUT DI	VIDED BY TTIN			
DHOTD	SPECIFIC	WURK DUIPOT DI	ATDED BA LITH			
ETATTD	TURBINE	UTAL-TU-TUTAL	TION			
TFFD	IURBINE I	NEET FLOW FUNC	1104			
	1111 - W-SU	AND ATED FREED	(N/SORT/TTIN))			
KNRTD	TURBINE C	UKKELILU SPEED	THE LOADING			
PSID	AVENAGE	URBINE FILLS	INVERZICATIO			
		U I THE CUIDE A	$R_{1} \in (+COUNT - ROT)$			
ANGSWX		H LINE AVIAL M	ACH NUMBER			
XMZXU	EXIL PILL	H LINE ANIAL H	ACH NONDER			
1111	TURBINE	NEET STAL DEE	SCONE			
PIIN	TURBINE A	NEET SHELLATE	PATIO			
FARGU	IURBINE I	REEL FUEL-MIN	TO IDEAL EXIT KE	3		
LIAN	NUZZLE ET	FIRALIO ACTUAL	TO IDEAL CALL A			
05.045 TOY	CARCIE 10/ 71/					
GEOMETRY	3FEC1F1CA110		OR FAIT TO INLET)		
RJUK2	PARTIC PL	TIO AT POTOR F	VIT(FIRST GUESS)			
KHUKIJ	KAUIUS KA	ITO AT ROTOR E				
NAMEL IST	INPILT					
MARIE I JI	15					
ASCHC (1) <u> </u>					
1	the wild stat	. اد ۵ اد اف اف 2	30.0000.	48.5885,		
5	5 <i>4. ม</i> มมศ.	68.0008.	78.8688.	80.8889,		
9	814. 1919 19 19 19 19 19 19 19 19 19 19 19 1	188.6888	110.0000.	12 0.088 8,		
12 1	311 NNMM	144.0000	150.8008.			
13 1 NPQ =	2M					
	1 1 SI M M	1.2888	1.4200.	1.6000.		
5	1 7 11 11	1.8458	2.0000	2.2000		
5	2 . / D. D. D	2.6800	2.8000,	3.8888,		
7			- · ·			

Figure 2. Input to First Example Case

9

		2 4.40.7	3.6888.	3.8 888 ,
13	3.2880,	1.4000,	A . A A A H .	4.6888,
17	4.8934.	4.2000,	4	
NAR	= 3,			
AKN	(1)=	1 00000	Ø.7000.	g. ,
L	1.3000.	1.8000,		
5	<i>a</i>), <i>8688</i> .	1. \$\$\$ 8,
1	1.2494,	1.1440,	••••••	
NSTG	= 1, JCOUL	A STATT	.	889,
DHQTD	= <u>9</u> .932/		193.520	
TEED	= 62.9800		0.373	888.
PSID	= £.8511		518.669	998.
ANGSW	X= 15.2002		- A .	
PTIN	n 14.6964	BB, FARGD		aaa.
ETAN	= Ø.9404	IDD, RJURZ		
RHURT	3. 8.733.	н и.		
END N	AMELIST IN			
ENTER	CHANGES TO NAME	IST INPUT		
-SINFU	TS .			
NAMEL	IST INPUT		•	
NSPDS	= 15,			
APCNC	(1)=		28 888 8	49.9099,
1	1២.៩៩៩៩។	29.6000,	30.0000, 70.0404	88.0888.
5	51.0000,	63.0000,	10.004 0,	129.9838.
ģ	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	198.8898	110.0000,	•••••
13	137.99999	140.0000,	120.0040.	
NPR	= 2 <i>B</i> ,			
APR	(])=			1.6888.
1	, آسائن الله 1 .	1.2000,	1.4000, 2.0404	2.2888.
5	. فرفر فر 1 .	1.8000,	2.0040,	3.8000.
9	2.4388.	2.6000,	2.0000,	3.8000.
13	3,200ð,	3.4888,	3.0800,	A. 6888.
17	4.8888.	4.2000,	4.4000,	
NAR	- 3.			
ARN	(1)+		a 7004	ø
1	1.3.4.4.4.	1.90599,	9.7000,	•••••
5	<u>ن</u> اخ	ø	1 9939	1.8888.
1	1.2490.	1.1440,	1.0000,	••••••
NSTG	- 1, 000	bL = ₿,	a a a a a a a a a a	3888.
DHUT	2 ב ש. ש. ש. ש	780, EIAI	193 52	иван.
TEFO	= <u>02.98</u> 2	1969, XNRII	ש ביים ביים ביים ביים ביים ביים ביים ביי	3888.
PSID	- ₿.8 51	100, XM2X		9998
ANGS	WX= 15.2#	JUUD, LIIN		
PTIN		BUB, FARG	U≕ 27. ⊃	
ETAN	.a. 19.94/	NUN' KIUK	2 - 1.00	
RHUR	T3= Ø. 73	3300,		
END	NAMELIST I	NPUT		
NASA	OUTPUT ON IFC=1	5,16 🛎		

.

.

OPICINAL FILM Cr .

P*A*R*T AXIAL OR RADIAL TURBINE? 1=RADIAL, # OR CR=AXIAL - 8 DESCRIPTION OF INPUT VARIABLES IN PART PROGRAM (NAMELIST INPUT) UNITS:TTIN-DEG R,PTIN-PSIA,W-PPS,H-BTU/LBM.N-RPM MAP RANGE(ARRAY VALUES MUST BE IN ASCENDING ORDER) NO OF SPEEDLINES DESIRED(MAX=15) ARRAY OF PERCENT CORRECTED SPEEDS NSPDS =15 APCNC NO OF PRESSURE RATIOS DESIRED(MAX=28) =28 NPR ARRAY OF PRESSURE RATIOS NO OF NOZZLE AREA RATIOS(MAX=6) APR NAR = 6 ARRAY OF FIRST STAGE NOZZLE AREA RATIOS ARN NO OF TURBINE STAGES(MAX=6) NSTG =6 INTEGER SWITCHES COOLING FLOW SWITCH(#=UNCOOLED,1=COOLED) JCOOL =Ø DESIGN POINT VALUES OF : SPECIFIC WORK OUTPUT DIVIDED BY TTIN DHOTD TURBINE TOTAL-TO-TOTAL EFFICIENCY ETATTD TURBINE INLET FLOW FUNCTION (TFF=W*SQRT(TTIN)/PTIN) TFFD TURBINE CORRECTED SPEED(N/SORT(TTIN)) AVERAGE TURBINE PITCH LINE LOADING PSID=DHQT/(2*(U/SQRT(TTIN)**2/GJ))/NSTG XNRTD PSID EXIT PITCH LINE SWIRL ANGLE (+COUNT-ROT) EXIT PITCH LINE AXIAL MACH NUMBER ANGSWX XMZXD TURBINE INLET TOTAL TEMPERATURE TTIN TURBINE INLET TOTAL PRESSRUE TURBINE INLET FUEL-AIR RATIO PTIN FARGD NOZZLE EFF(RATIO ACTUAL TO IDEAL EXIT KE) ETAN GEOMETRY SPECIFICATIONS: PITCHLINE RAD RATIO(ROTOR EXIT TO INLET) R3QR2 RADIUS RATIO AT ROTOR EXIT(FIRST GUESS) RHORT3 INPUT NAMELIST NSPDS = 15, APCNC (1)= 48.0000, 30.0000, 18.8998. 28.0888. 1 88.8888, 78.0000. 68.8888, 50.0000, 5 118.0000, 128.8888, 9 98.8888, 188.8888, 150.0000, 148.8088. 130.0000, 13 NPR ■ 2Ø, (])= APR 1.6000. 1.4000, 1.2888, 1.1888, 1 2.2000, 1.8888, 2.0008, 1.7888. 5 . 2.8000. 3.0000, 2.6888.

Figure 3. Input to Second Example Case

2.4888,

•

		-			3.6888.	3.002	e,
13	3.250	9, 3	.410101	•	4.4888.	4.581	₩,
17	4.859	Ø. 4		•			
NAR	- 3,					-	
ARN	(1)=	م ۱	-		# .7 <i>888</i> ,	H •	•
1	1.300	0, 1		•			aa
5	Ø .	a 1	1449	•	1.0000,		
1	1.249		8.	-			
NSTG	· · · ·	a A3278.	-,	ETATTD	.9		
DHUT	v =	62 988888		XNRTD =	193.5	(2000) 1988	
TFFD	•	# 851188.		XMZXD =	3 .3	/ 3000, Cadak	
PSID	•	15 289848		TTIN =	518.6	03330'	
ANGS	WX =	14.696000.		FARGD =	.		
PILN	-	A.944888.		R30R2 =	1.0		
LIAN	T 2=	. 733389,					
	NAMEI IST	INPUT					
	CHANGES T	TO NAMELIST	INPUT	•			
	5=6.			_			
	C=28.348.	,60.,80.,10	0.,124				
-NPR	-5.	_					
= APR	2.8.2.5.3	.#,3.5,3.8,					
=NAR	•1,						
=ARN	=1.0,						
-NST	G=3,						
=JCO	0L=1.						
=DHQ	TD=Ø.Ø635,						
=TFF	D=58.53,						
=XNR	TD=48.18,						
=P S 1	D=1.5,						
=ETA	TTD=#.886.						
=ANG	SWX=2.9,						
= X MZ	XD=8.41,						
=TTI	N=25##.,						
=PT1	N=59.8.						
=FAR	KGD≃₩.₩Z,						
- S							
		E INPUT VAR	IABLES	S IN PAR	T PROGRAM		
DESC	CKINICH D	, IN, V, VAN NT1)					
(NAI	WELISI INP					TING	
المراج بر		ERED COMBIN	ATION	OF DIGI	TS REPRESE!		
KIN	UUF - AR UKU THE COO	LING CONFIG	URATI	DN OF TH	E TURBINE		
TC -	TOTAL TEMP	ERATURE OF	THE C	OOLING F	LOW		
16	CYAFUEL-A1	R RATIO OF	THE C	OOLING F	LUW	TAL	
TAK VCA	REFIRST VE	AR OF SERV	ICE FO	R STATOR	C VARE MAILI	TERIAL	
	R REFIRST	YEAR OF SEI	IVICE	FOR ROTO	JK BLADE MA		
5 I I	FF=DESIRED	LIFE OF T	JRBINE	AIRFOIL	-		
661	IL-PLUINCE						
N A	MELIST	INPUT1					
K 1	NDOF -	119308,			a .	•	
TC TC		503.3000	88,	TAKUX .	1988.	-	
VE	AR =	1988.,	~	YLAKB -			
EL	1FE =	8 .18868888	9 5,				
Ē	D NAMELIST	T INPU	11				
ENT	TER CHANGES	S TO NAMELI	21 144				
# S	INPUT1						
=K	INDOF = 8648	68,					
•T	C = 7ØØ .,						
= \$							
Ň	AMELIST	INPUT					
N	SPDS = 6,						
Ä	PCNC (I)=			.	6 8 . 8869	, 8 <i>9</i>	
1	25.	<u>9549</u> ,	48.8	,			

Figure 3 - (Continued) Input to Second Example Case

· ·

5	180		12		•	75.8	888,	85.5550,
9	90		1.0	8.8888		110.0	888.	128.0000.
12	130		14			158.8		• •
NDD	- 6		• •		•		,	
	- 1	-						
O r N		-						2 5444
1	2			2.3000	•	3.8		3.3000, 3.3000,
5	5			1.0000	•			<u> </u>
9	2	. 4880.		2.60.00	•	2.8		3.0000,
13	3	.2000.		3.4000	•	3.6		3.8000,
17	- 4			4.2888	•	4.4	NA 0,	4.6888,
NAR	= 1							
ARN	(1)=	-						
1	1			1.8888	•	8.7	888.	ø
5	ġ			8.				•
ĩ	ĩ	2498		1.1448	•	1.8	888	1.8888.
NSTO			30001 -	1	•	•••		
DHOTD			867588	• •			a 996	
TCCD	-	E 0			VNRTD -	-	AG 100	
0010	Ξ				XAKID -		40.182	, 000, 1000
P 510	. •	1			XM2XU =		D.412	
ANGSWX		Z	.988888,				2200.000	
PTIN	•	59	. 800000,		FARGD =		Ø. 028	1000,
ETAN		g	.948888,		R3QR2 =	•	1.888	1009,
RHORTS	1 -		.733388,					
END NA	MELI	ST	INPUT					
PCBLED-		6478 P	CNCH+ .	82881	EFF4=	.883	5 PRN=	3.297
NASA OL	TPUT	ONTE	C=15.16					
				-				

4

Figure 3. - (Continued) Input to Second Example Case

1

Variable Name	Setting	Action Taken
NSTG	0.0	Program Calculates Number of Stages (Not Recommended)
ETATTD	0.0	Program Calculates Design Point Efficiency
PSID	0.0	Design Point Loading Set to 0.9
ANGSWX	180.0	Exit Swirl Angle Calculated From Zero Hub Reaction
XMZXD	0.0	Sets Exit Axial Mach Number to 0.5

Table IV. Variable Settings to Trigger Default Calculation of Some Design Point Input.

Table V. Default Settings for Variables in Namelist "Inputl"

Variable Name	Units	Default Value	Description
KINDOF	None	86400000	An Ordered Combination of Digits Representing the Cooling Configura- tion of the Turbine
TC	* R	700.0	Total Temperature of the Cooling Flow
FARCX	None	0.0	Fuel-Air Ratio of the Cooling Flow
Year		1980	First Year of Service for Stator Vane Material
YearB		1980	First Year of Service for Rotor Blade Material
ELIFE	hrs	10,000	Desired Life of Turbine Airfoil

Caller, Grand

The integer variable KINDOF represents the cooling configuration of the turbine. Each blade row starting with the first stage stator is assigned an integer value characterizing the type of cooling employed as follows:

0	Uncooled
1	Convection cooling
2	Convection with coating
3	Advanced convection
4	Film with convection (75% trailing edge injection)
5	Film with convection (50% trailing edge injection)
6	Film with convection (25% trailing edge injection)
7	Transpiration with convection (25% trailing edge injection)
8	Full coverage film
9	Transpiration

For example, the 86400000 configuration has the first three blade rows cooled and the remaining five rows uncooled (a four-stage turbine). For a detailed description of the cooling flow calculation and the various cooling flow configurations, the reader should consult Reference 3.

4.0 PROGRAM OUTPUTS

The basic output from the program consists of two tables. These tables show the turbine efficiency and turbine flow function variations for each of the first stage nozzle area ratios, pressure ratios, and percent corrected speeds specified in the input. The input values of area ratio are converted to first stage nozzle angles before being printed out. The output tables for the first example case are shown on pages 22 through 27. The table structure is compatible with NASA cycle deck requirements given in Reference 2 (pages 23 and 24).

The output tables can be visualized as three dimensional, composed of a series of planes with each plane assigned a value of nozzle angle, BETA. Then in each BETA plane, the dependent variable (ordinate axis) is a function of pressure ratio, PR, and corrected speed, rpm. The dependent variables are respectively turbine corrected flow, W, and total-to-total efficiency, ETA.

For example, in the output table on page 30 the forty-five lines of the dependent variable correspond to the fifteen values of corrected speed, where each speed occupies three lines. And the twenty values of the dependent variable in each three line group correspond to the twenty values of pressure ratio.

In addition to these two tables, there is a terminal listing summarizing the results of the cooling flow calculation, if this option was used. The value of the total cooling flow, PCBLED, is printed out together with the cooling flow for the first stage nozzle alone, PCNCH. The new cooled turbine efficiency value, EFF4, is given together with the new value of the total-to-total pressure ratio across the turbine, PRN. An example of this printout is shown on page 13 in the second example case. With the flows, shaft work, and turbine pressure ratio known, the user can calculate the new cooled turbine efficiency, ETATTD, using the bookkeeping procedure compatible with the cycle deck representation to be employed. A cycle deck efficiency scalar could then be used or, if desired, the program could be rerun on the uncooled branch using the new design point efficiency value as an input.

5.0 PROGRAM DIAGNOSTICS

The PART computer program contains error printouts to aid the user in trouble shooting his input. A listing of the error messages and their meanings are given below.

1. LIMITING VALUE OF UTIP=1800.0, CALCULATED VALUE OF UTIP=

This warning message is printed out if the calculated tip speed of a radial turbine exceeds 1800 fps.

2. LIMITING VALUE OF UHUB=1600.0, CALCULATED VALUE OF UHUB=

This warning message is printed out only if the calculated rim speed exceeds the recommended value (this is a disk stress warning).

3. LIMITING VALUE OF ANS=42.0E9, CALCULATED VALUE OF ANS=

This warning message is printed out if the product of the exit annulus area and the rpm squared exceeds the recommended value (this is a centrifugal stress limit on the rotor blading).

4. QUIRE CTR ERROR--(CALLING LINE=, 15,)

There are eight iterations in the program. Seven of the iterations are balanced using the Method of False Position. This method is contained in the subroutine QIREXX. A maximum of 25 passes is allowed for any single iteration to balance. If the iteration does not balance within the specified tolerance, the error message will appear with the number of the offending iteration in the I5 Format field.

Normally, the occurrence of such an error will not cause a problem. However, in the case of QIRE loop number five which calculates the turbine efficiency for the specified input values of pressure ratio and corrected speed, an additional message indicating the convergence error is printed out. This message has the form:

DHQT= ,ERR= ,PQP=

where the blanks contain the current values of specific enthalpy change divided by inlet total temperature, the convergence error in pressure ratio, and the pressure ratio at which the error occurred. The user should inspect the error to see if the degree of convergence is satisfactory, if not, it may be necessary to restrict the range of input speeds and/or pressure ratios requested. The individual QIRE loops together with the calling routines and type of iteration are as follows:

QIRE LOOP	CALLING ROUTINES	COMMENTS
1	INLETX	Calculates individual stage efficiencies from the input value of overall turbine efficiency (NSTG>1).
2	VELRAT	Obtains the axial velocity ratio across the rotor.
3	CHOKEX	Solves for the value of nozzle Mach number when the rotor chokes.
4	ROTCKX	Solves for exit annulus choke location given the location of rotor choke.
5	PRTEFF	Calculates efficiency for input values of speed and pressure ratio.
6	FSTACK	Solves for the "polytropic" exponent for a multistage turbine.
7	CHOKEX	Solves for the value of the nozzle overexpanded Mach number after nozzle choke and before rotor choke.

There is one iteration in the program balanced by the Newton-Raphson Method. A maximum of 25 passes is allowed for convergence. If an error occurs the program will print out the warning message

ZERO DERIVATIVE IN NEW RAP LNCALL = I 10

The value 1 will appear in the I10 field since this is the first Newton-Raphson loop.

NEWTON- RAPHSON LOOP	CALLING	COMMENTS
1	CHOKEX	Calculates the value of UQAT1 at the speed where both the nozzle and the rotor are choked.

6.0 EXAMPLE CASES

Two example cases are given in order to illustrate the use of the program. The first case utilizes the default settings to generate the output for a singlestage, uncooled, variable-geometry turbine. The second case is a single stage radial turbine.

A complete record of the two terminal sessions including a listing of the output tables is given on the following pages. The program inputs and outputs have been discussed previously in Sections 3.0 and 4.0.

*REMOVE CLEARFILES +OLD /NASAPT/NASAPART · · FRN 10/20/83 11.122 **\$**058Ø P*A*R*T AXIAL OR RADIAL TURBINE? 1=RADIAL, Ø OR CR=AXIAL • 8 DESCRIPTION OF INPUT VARIABLES IN PART PROGRAM (NAMELIST INPUT) UNITS:TTIN=DEG R,PTIN=PSIA,W=PPS,H=BTU/LBM,N=RPM MAP RANGE (ARRAY VALUES MUST BE IN ASCENDING ORDER) NO OF SPEEDLINES DESIRED (MAX-15) NSPDS =15 ARRAY OF PERCENT CORRECTED SPEEDS APCNC NO OF PRESSURE RATIOS DESIRED(MAX=28) NPR =28 ARRAY OF PRESSURE RATIOS APR NO OF NOZZLE AREA RATIOS(MAX=6) ARRAY OF FIRST STAGE NOZZLE AREA RATIOS NO OF TURBINE STAGES(MAX=6) NAR = 6 ARN NSTG =6 COOLING FLOW SWITCH(B-UNCOOLED,1-COOLED) INTEGER SWITCHES JC001 -8 DESIGN POINT VALUES OF: DHQTD SPECIFIC WORK OUTPUT DIVIDED BY TTIN TURBINE TOTAL-TO-TOTAL EFFICIENCY ETATTD TURBINE INLET FLOW FUNCTION TEFD (TFF=W=SORT(TTIN)/PTIN) TURBINE CORRECTED SPEED(N/SQRT(TTIN)) AVERAGE TURBINE PITCH LINE LOADING XNRTD PSID=DHQT/(2*(U/SQRT(TTIN)==2/GJ))/NSTG PSID EXIT PITCH LINE SWIRL ANGLE(+COUNT-ROT) EXIT PITCH LINE AXIAL MACH NUMBER ANGSWX EXIT FILCH LINE AXIAL MACH NUMB TURBINE INLET TOTAL TEMPERATURE TURBINE INLET TOTAL PRESSURE TURBINE INLET FUEL-AIR RATIO XMZXD TTIN PTIN NOZZLE EFF(RATIO ACTUAL TO IDEAL EXIT KE) FARGD ETAN GEOMETRY SPECIFICATIONS: PITCHLINE RAD RATIO(ROTOR EXIT TO INLET) RADIUS RATIO AT ROTOR EXIT(FIRST GUESS) R3QR2 RHORT3 INPUT NAMELIST NSPDS = 15, APCNC (I)= 49.9898. 30.0000, 20.0000, 10.0000. 1 85.0000, 7Ø.0000, . 63.39933. 50.0000. 120.0000, 5 118.0000, 100.0000, 90.0000. q 140.0000. 150.0000, 130.0000, 13 NPR = 2Ø, APR 1.6000. (I)= 1.4000, 1.2000. 1.1000, 1 2.2000, 2.0000, 1.8000. 1.7000. 3.0000, 5 2.8099, 2.6000, 2.4888. 9

12	3 288	a .	3.4000.	3.64		3.9 <i>880</i> ,
13	A 899		4.2868.	4.41	300,	4.6000,
L/	- 2					
	- 3,					
0 68	1 200	10	1 8888.	8.71	380.	8. ,
	1.304	<i>.</i>	a			
5	10.		1 1440	1.80	888.	1.8880,
1	1.243		_ 0	••••		
NSIG	= 1,		= N, 7	TATTO	# 923###	
DHQTD	•	10.103278	10, E 27 V	NATO -	103 528888	
TFFD	=	62.98000	<i>И</i> , К	NKIU -	193.3E00000	•
PSID	•	8.85118	<i>U</i> , X	MZXU -	510 £60009	•
ANGSWX	•	15.20000	Ø. <u>I</u>	11N =	210.007770	•
PTIN	=	14.69600	<i>1</i> 9, <u>F</u>	ARGU =	N . 	1
ETAN	=	Ø.9400ð	18, R	30R2 =	1.000000	•
RHORTS	*	Ø.7333Ø	ø.			
END NA	MELIST	INPU	Т			
ENTER C	HANGES	TO NAMELI	ST INPUT			
=SINPUT	S					
NAMELI	ST	INPUT			•	
NSPDS	= 15.					
ARCNC	(T) =					
		aa	28.8888.	38.8	68 8 .	49.0899,
· 1	E a . a a	a a	60.0000	78.8	885.	80.0000,
2		au	100 0000,	118.6	888. 1	20.0000,
9	90.00	010 , (1.7	1.00.0000,	158.8	888.	
13	130.00	00,	140.0000,		~~~ 1	
NPR	= 210,					
APR	(1)=	~ ~	1 2000	1 4	a a a	1.6808.
1	1.10	64.	1.2000	, 1.4 2 a	<u>aaa</u>	2.2000.
5	1.79	88.	1.8000,	, 2.0	000, 000	2 9999
9	2.40	ØØ,	2.5000	2.0	1990, Agaa	3 8888
13	3.20	Øð,	3.4000	, 3.0	999, aug	A 6000.
17	4.88	ØØ,	4.2000,	, 4.4	. מממ	4,0000,
NAR	= 3,					
ARN	(1)=					-
1	1.30	ØØ,	1.0000	, <i>1</i> 9.7	9 89,	ø. ,
5	ø.		ø.	,		
. 1	1.24	90.	1.1440	1.0	888,	1.0000,
NSTG	= 1	JCOOL	= <i>B</i> .	•		
DHOTD		8.83278	3ø. – i I	ETATTD=	Ø.923ØØØ	1.
		62.98MM	10.	KNRTD =	193.520000	í.
1 F F D B C 1 D	-	J 85110	10.	KMZXD =	Ø.373000	۶,
FSID	-	15 74443	70		518.669998	
ANGSW	-	13.20000	7.0 I	FARGD =	<u>.</u>	•
PIIN	-	4.07004		93092 m	1.000000	i.
ETAN	-	10. 34 <i>0.0X</i>	10, I			•
RHORT	3=	10,73338	. .			
END N	AMELIST	INPL				
NASA O	UTPUT ON	IFC=15,1	16 &			

•

•

I

21

•

ORIGINAL PAIR PR OF POOR QUALITY

•

1			V						
	269	9	TURBINE EF	FICIENCY VS.	PR, RPM,	AND BETA			
	BETA	3	61.	68.	75.		50	60	70
	RPM	15	10.	20.	30.	40.	50.	120	140
	RPM	15	80.	90.	100.	110.	120.	130.	
t	RPM	15	150.			1 60	1 70	1.80	2 00
	PR	20	1.10	1.20	1.40	1.60	2.00	3 20	3 40
	PR	20	2.20	2.40	2.60	2.00	4 40	4 60	•••••
	PR	20	3.60	3.80	4.00	0 282	0 269	0.258	0.242
Γ	EFF	20	0.511	0.405	0.321	0.202	0 204	0.200	0.196
	EFF	20	0.231	0.222	0.188	0 186	0.184	0.182	
	EFF	20	0.193	0.190	0.550	0.497	0.479	0.464	0.441
		20			0.401	0.393	0.386	0.380	0.375
	277	20	0.929	0 367	0.363	0.360	0.357	0.354	
	EFF	20	0.877	0.801	0.708	0.655	0.637	0.622	0.598
	555	20	0.580	0.567	0.557	0.546	0.534	0.524	0.515
ŀ	111	-20-	0.506	0.499	0.493	0.487	0.482	0.476	
	FFF	20	0.912	0.879	0.811	0.765	0.748	0.733	0.711
	EFF	20	0.691	0.667	0.648	0.632	0.619	0.604	0.591
ł	EFF	20	0.580	0.570	0.561	0.553	0.545	0.538	- 780
ł	EFF	20	0.901	0.914	0.874	0.835	0.820	0.808	0.780
	EFF.	20	0.750	0.725	0.705	0.685	0.667	0.032	0.033
	EFF	20	0.628	0.617	0.608	0.600	0.592	0,000	0.818
	EFF	20	0.860	0.920	0.910	0.878	0.000	0.632	0 674
ľ	EFF	20	0.787	0.762	0.739	0.713	0.702	0.622	•••••
	EFF	20	0.662	0.652	0.643	0.035	0.020	0 877	0.841
	EFF	20	0.799	0.905	0.362	0.302	0 726	0.712	0.699
	EFF	20	0.811	0.705	0.702	0.661	0.654	0.647	
	EFF	20	0.000	0.070	0.925	0.912	0.903	0.888	0.853
Į	EFF	20	0.710	0 799	0.778	0.759	0.743	0.728	0.716
	EFF	20	0.705	0.695	0.686	0.678	0.670	0.663	
ł	CFF FFF		0.622	0.833	0.915	0.911	0.905	0.891	0.859
	FFF	20	0.831	0.807	0.786	0.768	0.753	0.739	0.727
	EFF	20	0.716	0.706	0.697	0.689	0.681	0.674	0.959
	EFF	20	0.507	0.781	0.895	0.903	0.899	0.888	0.000
	EFF	20	0.833	0.810	0.790	0.773	0.758	0.744	0.752
	EFF	20	0.722	0.712	0.703	0.695	0.687	0.000	0.853
	EFF	20	0.385	0.719	0.868	0.888	0.009	0.879	0 734
1	EFF	20	0.830	0,809	0.790	0.774	<u> </u>	0.683	
8	EFF	20	0.724	0.714	0.708	0.090	0.872	0.866	0.845
-	EFF	20	0.253	0.049	0.034	0 771	0.757	0.745	0.734
11	EFF	20	0.824	0.804	0.706	0.698	0.691	0.684	
- È	EFF	- 20	0.723	0.714	0.794	0.844	0.852	0.850	0.833
1	EFF	20	0.100	0.797	0.780	0.766	0.752	0.741	0.730
	EFF	20	0.721	0.712	0.704	0.696	0.689	0.683	
	EFF	20	0.0	0.486	0.750	0.816	0.827	0.831	0.819
	FFF	- 20-	0.804	0.788	0.772	0.758	0.746	0.735	0.725
1	FFF	20	0.716	0.707	0.700	0.693	0.686	0.680	0 002
	EFF	20	0.0	0.394	0.701	0.784	0.799	0.809	0.002
	EFF	20	0.791	0.777	0.762	0.749	0.737	0.727	0.717
	EFF	20	0.709	0.701	0.694	0.687	0.681	U.6/3 en	70
1	RPM	15	10.	20.	30.	40.	120	130	140
	RPM	15	80.	90.	100.	110.	120.	100.	
1	RPM	15	150.		1 -20	1 60	1.70	1.80	2.00
	PR	20	1.10	1,20	2 60	2.80	3 00	3.20	3.40
1	PR	20	2.20	2.40	4 00	4.20	4.40	4.60	
'	PR	20	J. DU 0 442	0 344	0.269	0.235	0.223	0.214	0.200
	L L P P			0.183	0.176	0.171	D. 167	0.164	0.160
	EFF	20	0.158	0.155	0.153	0.151	0.149	0.148	
	ELL.	EV	.						

1								
			0 578	0 474	0 422	0.405	0.390	0.369
EFF	20	0,690	0.576	0.330	0.321	0.314	0.308	0.303
EFF CCC	20	0.352	0.295	0.291	0.288	0.285	0.282	
EFF	20	0.830	0.731	0.626	0.569	0.549	0.533	0.507
EFF	20	0.488	0.474	0.462	0.451	0.443	0.436	0.430
EFF	20	0.424	0.419	0.415	0.411	0.408	0.405	0 620
EFF	20	0.893	0.827	0.736	0.682	0.002	0.546	0.540
EFF		0.600	0.505	0.573	0.583	0.522	0.520	
EFF	20	0.034	0.884	0.814	0.766	0.749	0.733	0.709
EFF	20	0.691	0.676	0.663	0.652	0.646	0.641	0.637
EFF	20	0.633	0.630	0.626	0.623	0.619	0.615	A 370
EFF	20	0.900	0.911	0.865	0.828	0.813	0.800	0.778
EFF	20	0.760	0.745	0.735	0.727	0.721	0.715	0.705
EFF	20	0.702	0.696	0.690	0.605	0.859	0.849	0.828
EFF	20	0.867	0.919 0.709	0.300	0.780	0.772	0.763	0.754
EFF CCC	20	0.746	0.739	0.733	0.727	0.722	0.717	
EFF	20	0.817	0.910	0.918	0.901	0.892	0.884	0.864
EFF	20	0.848	0.836	0.825	0.816	0.804	0.794	0.785
EFF	20	0.776	0.769	0.762	0.756	0.750	0.744	0 889
EFF	20	0.753	0.690	0.925	0.918	0.913	0.900	0.805
EFF	20	0.874	0.001	0.000	0.775	0.769	0.763	
L L L L	20	0.796	0.859	0.922	0.926	0.924	0.919	0.905
FFF	20	0,890	0.877	0.865	0.852	0.839	0.828	0.818
EFF	20	0.809	0.801	0.794	0.787	0.781	0.775	a a.a
EFF	20	0.589	0.820	0.912	0.927	0.928	0.925	0.913
EFF	20	0.899	0.886	0.874	0.860	0.847	0.836	0.020
EFF	20	0.817	0.809	0.801	0.794	0.926	0.925	0.916
EFF	20	U.465 0.902	0.889	0.878	0.864	0.851	0.840	0.830
FFF	- 20 -	0.821	0.813	0.805	0.798	0.791	0.785	
EFF	20	0.379	0.721	0.873	0.910	0.919	0.921	0.915
EFF	20	0.902	0.889	0.878	0.864	0.852	0.840	0.831
EFF	20	0.822	0.813	0.806	0.799	0.792	0.786	0.909
EFF	20	D. 265	0.001	0.845	0.851	0.849	0.838	0.829
EFF	20	0.820	0.812	0.804	0.797	0.791	0.785	
FFF	20	0.141	0.596	0.813	0.875	0.891	0.900	0.900
8 EFF	20	0.891	0.880	0.870	0.857	0.845	0.834	0.825
EFF	20	0.816	0,608	0.801	0.794	0.788	0.782	70
RPM	15	10.	20.	30.	40.	50.	130	140
RPM	15		90	100.	110.	120.		
	20	10	1.20	1.40	1.60	1.70	1.80	2.00
PR	20	2.20	2.40	2.60	2.80	3.00	3.20	3.40
PR	20	3.60	3.80	4.00	4.20	4.40	4.60	
EFF	20	0.372	0.287	0.222	0.193	0.184	0.176	0.104
EFF	20	0.156	0.149	0.144	0.140	0.136	0.133	0.131
EFF	20	0.128	0.126	0.120	0.123	0.335	0.323	0.304
LFF EFF	20		- 0 279	0.270	0.263	0.256	0.251	0.247
FFF	20	0.243	0.239	0.236	0.233	0.231	0.228	
EFF	20	0.739	0.634	0.532	0.478	0.460	0.445	0.421
EFF	20	0.403	0.390	0.378	0.369	0.361	0.355	0.349
EFF	20	0.344	0.339	0,335	0.331	0.328	U. 325 0 545	0.519
EFF	20	0.816	0.732	U. 635 0 472	U. 36U 0 461	0.301	0.445	0,438
EFF	20	U. 500 0 432	U,464 0 427	0.423	0,418	0.415	0.411	
FFF	20	0.454	0.796	0.713	0.661	0.642	0.626	0.500
EFF	20	0.580	0.564	0.551	0.540	0.531	0.523	0.516
- - -								

-

•

P 20 0.510 0.505 0.500 0.734 0.736 0.531 0.554 F 20 0.647 0.631 0.618 0.653 0.753 0.553 0.544 F 20 0.756 0.753 0.766 0.762 0.753 0.554 F 20 0.756 0.763 0.763 0.763 0.654 0.657 F 20 0.763 0.666 0.657 0.763 0.664 0.763 F 20 0.766 0.666 0.657 0.763 0.763 0.763 F 20 0.764 0.773 0.763 0.763 0.763 0.763 F 20 0.764 0.773 0.763 0.764 0.774 0.763 F 20 0.764 0.773 0.763 0.763 0.764 0.774 0.764 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774 0.774						0 401	0 488	
200 0.665 0.637 0.770 0.724 0.405 0.531 0.584 7 20 0.677 0.673 0.566 0.755 0.735 0.732 0.643 0.643 7 20 0.670 0.673 0.626 0.626 0.643 0.643 0.643 0.643 0.643 7 20 0.687 0.631 0.648 0.667 0.632 0.613 0.643 0.743 0.763 7 20 0.687 0.731 0.723 0.714 0.706 0.630 0.763 7 20 0.686 0.660 0.673 0.673 0.666 0.675 7 20 0.686 0.660 0.673 0.764 0.743 0.746 7 20 0.686 0.860 0.723 0.716 0.713 0.714 0.744 7 20 0.724 0.723 0.716 0.713 0.744 0.744 7 20 0.712 0.833 0.874 0.814 0.843 0.845 <th< td=""><td>FF 20</td><td>0.510</td><td>0.505</td><td>0.500</td><td>0.495</td><td>0,491</td><td>0.691</td><td>0.666</td></th<>	FF 20	0.510	0.505	0.500	0.495	0,491	0.691	0.666
200 0.647 0.631 0.619 0.855 0.555 20 0.856 0.853 0.812 0.722 0.765 0.742 0.744 7 20 0.685 0.676 0.657 0.649 0.643 7 20 0.637 0.631 0.620 0.632 0.633 0.763 7 20 0.637 0.663 0.773 0.73 0.763 0.763 7 20 0.747 0.734 0.763 0.746 0.744 0.798 7 20 0.747 0.734 0.763 0.746 0.744 0.798 7 20 0.746 0.866 0.801 0.802 0.814 0.798 0.716 7 20 0.742 0.726 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.740 0.734 0.825 0.875 0.875 0.875 0.875 0.875 0.875 0.875	FF 20	0.865	0.837	0.770	0.724	0,700	0.591	0.584
50 0.578 0.573 0.568 0.732 0.742 0.742 0.743 7 20 0.685 0.676 0.666 0.613 0.649 0.643 7 20 0.637 0.661 0.676 0.665 0.765 0.649 0.763 7 20 0.637 0.661 0.677 0.736 0.765 0.650 0.652 7 20 0.646 0.641 0.720 0.736 0.766 0.650 0.652 7 20 0.646 0.661 0.671 0.736 0.746 0.734 7 20 0.646 0.661 0.675 0.730 0.746 0.710 0.774 7 20 0.742 0.723 0.741 0.774 0.769 7 20 0.742 0.857 0.781 0.740 0.758 7 20 0.643 0.675 0.867 0.860 0.825 0.847 7	FF 20	0.647	0.631	0.619	0.608	0.090	0.555	
20 0 885 0 812 0 7/2 0 645 0 643 7 20 0.637 0.631 0.676 0.622 0.718 0.763 0.753 7 20 0.637 0.663 0.671 0.763 0.763 0.763 7 20 0.747 0.734 0.723 0.713 0.763 0.743 0.763 7 20 0.646 0.661 0.671 0.723 0.744 0.734 0.724 7 20 0.744 0.724 0.734 0.746 0.744 0.734 7 20 0.764 0.740 0.734 0.765 0.746 0.740 0.785 7 20 0.763 0.761 0.757 0.751 0.774 0.765 7 0.762 0.763 0.763 0.763 0.763 0.764 0.774 0.774 7 0.763 0.870 0.866 0.867	FF 20	0.578	0.573	0.508	0.563	- 0.335 - 0.786	0.742	0.719
20 0.702 0.688 0.676 0.805 0.216 0.614 0.763 7 20 0.637 0.663 0.627 0.632 0.763 0.669 0.627 7 20 0.637 0.664 0.773 0.763 0.669 0.669 7 20 0.646 0.661 0.677 0.673 0.669 0.664 7 20 0.646 0.661 0.676 0.624 0.614 0.794 7 20 0.646 0.661 0.676 0.713 0.710 0.734 7 20 0.762 0.783 0.774 0.776 0.774 0.776 7 20 0.762 0.835 0.774 0.776 0.774 0.763 7 20 0.762 0.874 0.867 0.853 0.847 7 20 0.763 0.784 0.785 0.783 0.784 0.835 0.843 7 20 <	FF 20	0.858	0.859	0.812	0.772	0.750	0.649	0.643
T DO 0.637 0.631 0.626 0.841 0.803 0.765 0.783 0.763 F 20 0.747 0.734 0.723 0.714 0.766 0.666 0.667 F 20 0.804 0.866 0.861 0.677 0.673 0.666 0.674 0.734 0.745 0.733 0.740 0.734 0.740 0.734 0.740 0.734 0.740 0.745 0.740 0.745 0.740 0.740 0.740 0.741	FF 20	0.702	Q.688	0.676	U. 666	0.037	0.614	
F CO 0.837 0.866 0.841 0.723 0.714 0.726 0.666 0.666 0.662 F 20 0.866 0.661 0.677 0.673 0.868 0.666 0.734 F 20 0.744 0.773 0.763 0.754 0.746 0.734 F 20 0.762 0.723 0.773 0.764 0.764 0.734 F 20 0.728 0.720 0.716 0.716 0.716 0.746 0.758 F 20 0.752 0.752 0.760 0.751 0.774 0.758 F 20 0.816 0.803 0.773 0.783 0.867 0.835 0.843 F 20 0.835 0.828 0.783 0.873 0.867 0.860 F 20 0.835 0.827 0.841 0.833 0.830 0.867 0.860 F 20 0.866 0.861 0.852	FF 20	0.637	0.631	0.620	0.022	0.010	0.783	0.763
20 0.747 0.734 0.723 0.723 0.765 0.765 0.765 0.746 0.734 0.734 F 20 0.804 0.866 0.860 0.873 0.746 0.740 0.734 F 20 0.728 0.724 0.723 0.764 0.740 0.734 F 20 0.728 0.724 0.723 0.764 0.746 0.773 0.765 F 20 0.728 0.723 0.753 0.753 0.771 0.765 F 20 0.712 0.833 0.871 0.773 0.765 0.778 F 20 0.712 0.833 0.871 0.873 0.870 0.835 0.845 F 20 0.712 0.833 0.872 0.873 0.870 0.873 0.783 F 20 0.833 0.820 0.830 0.826 0.783 0.807 F 20 0.833 0.813 0.832 <td>FF 20</td> <td>0.837</td> <td>0.868</td> <td>0.841</td> <td>0.809</td> <td>0.795</td> <td>0.690</td> <td>0.692</td>	FF 20	0.837	0.868	0.841	0.809	0.795	0.690	0.692
P20 0.686 0.677 0.673 0.673 0.674 0.734 0.734 F 20 0.784 0.773 0.763 0.754 0.746 0.734 0.734 F 20 0.726 0.724 0.720 0.716 0.835 0.766 0.734 0.734 F 20 0.725 0.721 0.724 0.720 0.711 0.744 0.734 F 20 0.752 0.757 0.734 0.774 0.774 0.765 F 20 0.765 0.760 0.757 0.731 0.748 F 20 0.765 0.760 0.757 0.731 0.743 F 20 0.735 0.877 0.867 0.860 0.803 0.843 F 20 0.735 0.873 0.873 0.867 0.866 F 20 0.853 0.872 0.873 0.867 0.860 F 20 0.866	FF 20	0.747	0.734	0.723	0.714	0.700	0,666	-
CO 0.804 0.866 0.805 0.924 0.720 0.734 0.710 F 20 0.728 0.724 0.720 0.716 0.713 0.740 0.825 F 20 0.725 0.854 0.874 0.740 0.740 0.759 F 20 0.755 0.760 0.757 0.753 0.740 0.748 F 20 0.755 0.760 0.757 0.753 0.763 0.740 F 20 0.755 0.760 0.757 0.753 0.763 0.740 F 20 0.712 0.835 0.827 0.857 0.845 F 20 0.728 0.720 0.733 0.763 0.784 F 20 0.734 0.780 0.783 0.783 0.857 0.857 F 20 0.853 0.877 0.873 0.856 0.856 0.857 F 20 0.850 0.856 <	FF 20	0,686	0.681	0.677	0.673	0.003	0.814	0.798
F 20 0.764 0.773 0.763 0.716 0.716 0.710 0.710 0.721 0.724 0.720 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.716 0.774 0.753 0.751 0.761 0.748 0.759 0.760 0.751 0.761 0.748 0.752 0.751 0.751 0.746 0.752 0.753 0.751 0.753 0.753 0.753 0.753 0.753 0.752 0.752 0.748 0.786 0.785 0.765 0.765 0.765 0.753 0.753 0.753 0.765 0.765 0.860 0.783 0.785 0.783 0.785 0.783 0.785 0.783 0.785 0.783 0.785 0.875 0.857 0.860 0.857 0.856 0.856<	FF 20	0.804	0.866	0.800	0.835	0.024	0 740	0.734
20 0.724 0.720 0.716 0.716 0.746 0.720 0.835 0.836 0.825 FF 20 0.813 0.803 0.734 0.787 0.731 0.740 0.769 FF 20 0.765 0.765 0.753 0.731 0.746 0.769 FF 20 0.765 0.771 0.753 0.731 0.746 0.769 FF 20 0.816 0.826 0.820 0.860 0.803 0.798 FF 20 0.655 0.816 0.720 0.730 0.760 0.867 FF 20 0.653 0.816 0.872 0.830 0.800 0.807 FF 20 0.653 0.847 0.835 0.830 0.826 0.822 FF 20 0.818 0.835 0.875 0.875 0.874 0.871 FF 20 0.818 0.835 0.834 0.832 0.843 0.842	FF 20	0.784	0.773	0.763	0.754	0.740	0 710	
r 20 0.762 0.856 0.870 0.834 0.760 0.774 0.763 r 20 0.765 0.760 0.757 0.753 0.748 0.748 r 20 0.712 0.835 0.871 0.857 0.753 0.748 r 20 0.742 0.783 0.785 0.773 0.783 0.786 r 20 0.744 0.790 0.783 0.785 0.783 0.786 r 20 0.785 0.867 0.867 0.867 0.860 r 20 0.855 0.847 0.841 0.873 0.873 0.867 r 20 0.853 0.847 0.841 0.835 0.830 0.822 r 20 816 0.813 0.813 0.813 0.813 0.822 r 20 866 0.856 0.852 0.830 0.843 0.8428 r 20 846 0.852	FF 20	0.729	0.724	0.720	0.716	0.715	0.838	0.825
FF 20 0.813 0.603 0.794 0.787 0.753 0.748 FF 20 0.765 0.760 0.777 0.753 0.887 0.855 0.845 FF 20 0.836 0.828 0.820 0.814 0.806 0.803 0.798 FF 20 0.794 0.790 0.783 0.765 0.763 0.760 FF 20 0.655 0.816 0.872 0.873 0.870 0.826 0.822 FF 20 0.835 0.847 0.841 0.835 0.830 0.826 0.822 FF 20 0.816 0.811 0.835 0.830 0.826 0.821 FF 20 0.816 0.813 0.811 0.809 0.807 FF 20 0.818 0.816 0.856 0.852 0.843 0.844 0.841 FF 20 0.838 0.836 0.834 0.832 0.843 0.844 0.841 FF 20 0.856 0.861 0.856 0.873 0.875 0.875 0.875 FF 20 0.858 0.834 0.836 0.835 0.873 0.875 0.875 FF 20 0.858 0.834 0.855 0.843 0.844 0.841 FF 20 0.858 0.836 0.855 0.873 0.875 0.875 0.875 FF 20 0.854 0.852 0.855 0.843 0.858 0.855 FF 20 0.854 0.852 0.855 0.844 0.841 FF 20 0.854 0.852 0.855 0.843 0.855 FF 20 0.854 0.852 0.855 0.843 0.855 FF 20 0.854 0.852 0.856 0.857 0.875 0.875 FF 20 0.854 0.852 0.856 0.857 0.873 0.875 FF 20 0.854 0.855 0.856 0.857 0.857 FF 20 0.860 0.878 0.856 0.857 0.857 FF 20 0.854 0.855 0.856 0.857 FF 20 0.860 0.878 0.876 0.857 0.857 FF 20 0.860 0.878 0.876 0.857 FF 20 0.860 0.878 0.856 0.857 FF 20 0.860 0.878 0.856 0.857 FF 20 0.860 0.854 0.857 FF 20 0.860 0.854 0.857 FF 20 0.860 0.878 0.856 0.857 FF 20 0.860 0.854 0.856 0.857 FF 20 0.860 0.856 0.857 FF 20 0.850 0.856 0.857 FF 20 0.856 0.856 0.857 FF 20 0.850 0.856 0.856 0.857 FF 20 0.850 0.856 0.856 0.857 FF 20 0.856 0.856 0.856 0.857 FF 20 0.856 0.856 0.856 0.857 FF 20 0.856 0.856 0.	FF 20	0.762	0.856	0.870	0.834	0.780	0.774	0.769
FF 20 0.765 0.760 0.797 , 0.783 0.780 0.886 0.885 0.845 FF 20 0.794 0.790 0.783 0.874 0.867 0.860 0.893 0.796 FF 20 0.794 0.790 0.783 0.775 0.783 0.760 0.867 FF 20 0.655 0.816 0.872 0.873 0.870 0.866 0.822 FF 20 0.853 0.816 0.813 0.811 0.809 0.807 FF 20 0.818 0.616 0.813 0.811 0.809 0.807 FF 20 0.850 0.786 0.866 0.875 0.875 0.874 0.871 FF 20 0.818 0.816 0.854 0.852 0.843 0.844 0.841 FF 20 0.818 0.835 0.834 0.832 0.835 0.874 0.871 FF 20 0.856 0.852 0.864 0.853 0.873 0.876 0.877 FF 20 0.818 0.835 0.834 0.852 0.843 0.844 0.841 FF 20 0.818 0.835 0.834 0.852 0.861 0.858 0.875 FF 20 0.850 0.875 0.871 0.877 FF 20 0.850 0.875 0.874 0.877 FF 20 0.854 0.852 0.864 0.865 0.852 0.841 FF 20 0.856 0.852 0.864 0.865 0.852 0.841 FF 20 0.850 0.876 0.857 0.873 0.877 FF 20 0.850 0.876 0.857 0.873 0.876 0.857 FF 20 0.850 0.876 0.852 0.849 0.841 FF 20 0.850 0.876 0.857 0.873 0.873 FF 20 0.850 0.878 0.867 0.857 0.873 FF 20 0.850 0.878 0.856 0.865 0.865 0.851 0.858 FF 20 0.850 0.852 0.850 0.849 0.841 FF 20 0.850 0.867 0.857 0.871 FF 20 0.866 0.866 0.867 0.857 FF 20 0.850 0.878 0.876 0.873 0.873 FF 20 0.850 0.867 0.857 0.857 FF 20 0.850 0.867 0.857 0.857 0.857 FF 20 0.850 0.867 0.857 0.857 0.857 FF 20 0.850 0.867 0.857 0.857 0.857 FF 20 0.866 0.864 0.863 0.862 0.857 0.851 FF 20 0.866 0.855 0.857 0.851 FF 20 0.856 0.855 0.857 0.851 FF 20 0.856 0.855 0.857 0.851 FF 20 0.856 0.855 0.855 0.855 0.857 0.851 FF 20 0.856 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.857	FF 20	0.813	0.803	0.794	0.787	0.751	0 748	
FF 20 0.712 0.839 0.874 0.800 0.804 0.806 0.803 0.798 FF 20 0.794 0.790 0.783 0.785 0.783 0.780 0.780 FF 20 0.855 0.816 0.872 0.873 0.870 0.866 0.826 FF 20 0.855 0.816 0.811 0.835 0.830 0.826 0.827 FF 20 0.856 0.861 0.856 0.873 0.871 0.871 FF 20 0.838 0.788 0.856 0.855 0.874 0.874 FF 20 0.838 0.785 0.855 0.873 0.875 0.877 FF 20 0.838 0.785 0.855 0.873 0.875 0.877 FF 20 0.856 0.855 0.855 0.873 0.876 0.877 FF 20 0.858 0.755 0.855 0.873 0.876 0.877 FF 20 0.858 0.755 0.855 0.873 0.875 0.875 FF 20 0.856 0.855 0.855 0.867 0.875 FF 20 0.856 0.855 0.855 0.873 0.875 0.875 FF 20 0.856 0.855 0.855 0.867 0.875 FF 20 0.856 0.855 0.855 0.867 0.875 FF 20 0.856 0.855 0.855 0.867 0.875 FF 20 0.854 0.855 0.855 0.841 0.856 FF 20 0.854 0.855 0.855 0.867 0.871 0.856 FF 20 0.854 0.856 0.873 0.871 0.868 FF 20 0.866 0.864 0.863 0.863 0.857 0.851 FF 20 0.866 0.864 0.863 0.857 0.851 FF 20 0.866 0.864 0.857 0.871 0.859 FF 20 0.866 0.864 0.863 0.857 0.851 FF 20 0.866 0.864 0.857 0.857 0.857 FF 20 0.856 0.864 0.857 0.857 FF 20 0.866 0.864 0.857 0.857 FF 20 0.866 0.864 0.857 0.857 FF 20 0.855 0.854 0.857 FF 20 0.866 0.864 0.857 0.857 FF 20 0.866 0.864 0.857 0.857 FF 20 0.855 0.854 0.857 FF 20 0.866 0.864 0.857 0.857 FF 20 0.855 0.854 0.857 FF 20 0.856 0.864 0.857 0.857 FF 20 0.855 0.854 0.857 FF 20 0.856 0.854 0.857 0.857 FF 20 0.856 0.854 0.857 0.857 FF 20 0.856 0.854 0.857 FF 20 0.856 0.854 0.857 0.857 FF 20 0.856 0.856 0.854 0.857 0.857 0.851 FF 20 0.856 0.856 0.854 0.856 0.857 0.857 0.851 FF 20 0.856 0.856 0.854 0.856 0.857 0.857 0.851 FF 20 0.856 0.856 0.856 0.856 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0	FF 20	0.765	0.760	0.757	0.753	0.00	0.855	0.845
FF 20 0.836 0.826 0.820 0.014 0.793 0.780 FF 20 0.794 0.780 0.780 0.783 0.783 0.873 0.867 0.655 0.816 0.872 0.873 0.870 0.867 0.860 FF 20 0.818 0.816 0.811 0.835 0.830 0.807 FF 20 0.866 0.861 0.866 0.875 0.874 0.871 FF 20 0.866 0.861 0.852 0.843 0.844 0.841 FF 20 0.838 0.836 0.834 0.832 0.830 0.827 0.877 FF 20 0.856 0.855 0.853 0.873 0.875 0.877 0.877 FF 20 0.875 0.871 0.868 0.865 0.861 0.855 0.861 0.856 FF 20 0.875 0.874 0.852 0.849 0.841 FF 20 0.875 0.871 0.868 0.865 0.865 0.861 0.855 FF 20 0.876 0.871 0.868 0.865 0.861 0.856 FF 20 0.875 0.871 0.868 0.865 0.857 0.873 0.877 FF 20 0.875 0.871 0.864 0.865 0.853 0.875 0.874 0.856 FF 20 0.876 0.871 0.862 0.849 0.847 0.841 FF 20 0.864 0.876 0.874 0.871 0.868 0.855 FF 20 0.860 0.878 0.876 0.874 0.871 0.869 0.867 FF 20 0.860 0.866 0.876 0.874 0.871 0.869 0.867 FF 20 0.860 0.866 0.876 0.874 0.871 0.869 0.867 FF 20 0.860 0.868 0.876 0.874 0.871 0.869 0.867 FF 20 0.860 0.864 0.863 0.865 0.851 0.855 FF 20 0.860 0.864 0.852 0.853 0.855 0.857 0.851 FF 20 0.860 0.864 0.852 0.854 0.855 FF 20 0.866 0.864 0.855 0.854 0.855 FF 20 0.865 0.864 0.855 0.855 0.857 0.857 FF 20 0.866 0.864 0.8653 0.865 0.855 FF 20 0.865 0.857 0.857 0.857 FF 20 0.866 0.864 0.8653 0.8652 0.857 0.851 FF 20 0.865 0.864 0.855 0.855 0.855 FF 20 0.855 0.855 0.855 0.855 0.855 0.855 FF 20 0.866 0.864 0.855 0.855 0.855 0.855 FF 20 0.865 0.864 0.855 0.855 0.855 0.855 FF 20 0.855 0.855 0.855 0.855 0.855 0.855 FF 20 0.866 0.864 0.855 0.855 0.855 0.855 FF 20 0.855 0.855 0.855 0.855 0.855 0.855 FF 20 0.856 0.864 0.855 0.855 0.855 0.855 FF 20 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.855 FF 20 0.856 0.856 0.856 0.856 0.855 0.855 0.855 FF 20 0.856 0.856 0.856 0.855 0.855 0.855 0.855 FF 20 0.856 0.856 0.856 0.856 0.855 0.855 0.855 FF 20 0.856 0.856 0.856 0.855 0.855 0.855 0.855 0.855 FF 20 0.856 0.856 0.856 0.855 0.855 0.855 0.855 0.855 FF 20 0.856 0.856 0.856 0.855 0.855 0.855 0.855 0.855 FF 20 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 FF 20 0.855 0.855 0.855 0.855 0	FF 20	0.712	0.839	0.874	0.007	0.000	0.803	0.798
FF 20 0.794 0.790 0.780 0.783 0.870 0.867 0.867 FF 20 0.853 0.816 0.872 0.873 0.870 0.826 0.822 FF 20 0.813 0.816 0.813 0.811 0.809 0.807 FF 20 0.818 0.816 0.813 0.811 0.809 0.807 FF 20 0.830 0.784 0.866 0.875 0.877 0.874 0.841 FF 20 0.836 0.835 0.834 0.832 0.843 0.844 FF 20 0.818 0.735 0.855 0.873 0.875 0.877 FF 20 0.818 0.735 0.855 0.873 0.875 0.877 FF 20 0.854 0.855 0.866 0.861 0.858 0.856 FF 20 0.854 0.852 0.863 0.849 0.847 0.841 FF 20 0.854 0.856 0.874 0.871 0.846 FF 20 0.854 0.856 0.864 0.865 0.861 0.856 0.856 FF 20 0.854 0.852 0.850 0.868 0.873 0.876 0.880 FF 20 0.854 0.852 0.850 0.864 0.857 0.871 FF 20 0.854 0.857 0.874 0.871 0.840 FF 20 0.854 0.857 0.874 0.871 0.845 FF 20 0.866 0.866 0.863 0.865 0.857 0.857 FF 20 0.866 0.864 0.863 0.857 0.857 FF 20 0.856 0.864 0.865 0.857 0.851 FF 20 0.866 0.864 0.865 0.857 0.851 FF 20 0.856 0.864 0.857 0.857 0.857 FF 20 0.856 0.864 0.865 0.865 0.857 0.851 FF 20 0.856 0.864 0.865 0.865 0.857 0.851 FF 20 0.856 0.864 0.865 0.865 0.857 0.851 FF 20 0.856 0.866 0.865 0.865 0.857 0.851 FF 20 0.856 0.866 0.865 0.857 0.857 0.851 FF 20 0.856 0.866 0.857 0.857 0.851 FF 20 0.856 0.856 0.857 0.851	FF 20	0.836	0.828	0.820	0.014	0 783	0.780	
FF 20 0.655 0.816 0.873 0.830 0.826 0.826 0.822 FF 20 0.816 0.816 0.811 0.809 0.807 0.874 0.875 0.874 0.875 0.874 0.875 0.874 0.875 0.874 0.871 FF 20 0.530 0.786 0.866 0.875 0.874 0.871 0.871 FF 20 0.866 0.856 0.852 0.843 0.841 0.841 FF 20 0.838 0.835 0.834 0.832 0.830 0.875 0.877 0.877 FF 20 0.838 0.852 0.873 0.875 0.877 0.877 0.877 0.875 FF 20 0.875 0.871 0.866 0.876 0.875 0.877 0.876 0.875 0.877 0.876 0.876 0.876 0.876 0.876 0.876 0.876 0.876 0.876 0.876 0.876 0.877 0.877 0.877 0.877 0.877 0.877 0.877 0.877	FF 20	0.794	0.790	0.785	0.070	0 870	0.867	0.860
FF 20 0.853 0.841 0.835 0.802 0.807 FF 20 0.816 0.816 0.875 0.875 0.877 0.871 FF 20 0.838 0.788 0.866 0.875 0.875 0.874 0.641 FF 20 0.836 0.851 0.832 0.830 0.844 0.641 FF 20 0.838 0.835 0.834 0.832 0.830 0.826 FF 20 0.838 0.755 0.855 0.873 0.877 0.877 FF 20 0.838 0.755 0.853 0.857 0.877 0.877 FF 20 0.875 0.875 0.876 0.874 0.876 0.876 FF 20 0.854 0.852 0.866 0.867 0.867 0.867 FF 20 0.850 0.876 0.874 0.876 0.867 FF 20 0.866 0.863	FF 20	0.655	0.816	0.872	U.0/J	<u> </u>	0.826	0.822
FF 20 0.818 0.816 0.813 0.871 0.805 0.874 0.874 0.874 0.871 FF 20 0.866 0.861 0.856 0.852 0.843 0.844 0.841 FF 20 0.866 0.851 0.855 0.873 0.875 0.877 0.877 FF 20 0.838 0.835 0.855 0.873 0.875 0.877 0.877 FF 20 0.875 0.875 0.855 0.873 0.875 0.877 FF 20 0.875 0.871 0.866 0.865 0.861 0.856 0.875 FF 20 0.875 0.871 0.868 0.876 0.876 0.886 FF 20 0.852 0.876 0.874 0.871 0.865 0.865 FF 20 0.866 0.876 0.874 0.871 0.865 0.865 FF 20 0.866 0.863 0.862 0.857 0.851 COT 0.866 0.863 0.862 <	FFF 20	0.853	0.847	D.841	0,033	0,000	0.807	
FF 20 0.590 0.788 0.805 0.873 0.812 0.844 0.841 FF 20 0.838 0.835 0.853 0.832 0.830 0.828 FF 20 0.519 0.755 0.855 0.873 0.877 0.877 FF 20 0.854 0.852 0.865 0.861 0.858 0.856 FF 20 0.854 0.852 0.850 0.848 0.841 FF 20 0.854 0.852 0.850 0.848 0.873 0.876 0.880 FF 20 0.854 0.856 0.876 0.874 0.871 0.859 0.867 FF 20 0.866 0.864 0.863 0.862 0.857 0.851 FF 20 0.866 0.864 0.863 0.862 0.857 0.851 FF 20 0.866 0.864 0.863 0.862 0.857 0.851	EFF 20	0.818	0.816	0.813	0.011	0.875	0.874	0.871
FF 20 0.866 0.831 0.835 0.832 0.832 0.833 0.827 0.877 FF 20 0.519 0.755 0.855 0.873 0.875 0.856 0.856 FF 20 0.875 0.871 0.865 0.865 0.856 0.856 0.856 FF 20 0.875 0.871 0.865 0.873 0.876 0.856 FF 20 0.854 0.852 0.873 0.876 0.856 FF 20 0.854 0.876 0.873 0.876 0.876 FF 20 0.437 0.718 0.840 0.876 0.873 0.876 0.876 FF 20 0.437 0.718 0.862 0.874 0.871 0.869 0.867 FF 20 0.866 0.864 0.863 0.862 0.857 0.851 COT 0.866 0.864 0.863 0.862 0.857 0.851	EFF 20	0.590	0.788	0,866	0.070	0.849	0.844	0.841
FF 20 0.838 0.836 0.034 0.873 0.875 0.877 0.877 FF 20 0.875 0.871 0.868 0.865 0.861 0.856 0.856 FF 20 0.854 0.852 0.865 0.863 0.847 0.841 FF 20 0.854 0.852 0.849 0.847 0.841 FF 20 0.854 0.852 0.876 0.873 0.875 0.856 FF 20 0.854 0.852 0.860 0.849 0.847 0.841 FF 20 0.850 0.876 0.874 0.871 0.869 0.865 FF 20 0.866 0.876 0.874 0.871 0.869 0.867 FF 20 0.866 0.863 0.862 0.857 0.851 0.7 0.864 0.863 0.862 0.857 0.851 0.7 0.865 0.864 0.863 0.862 0.857 0.851	EFF 20	0.866	0.861	0.856	0.002	0.830	0.828	
FF 20 0.519 0.755 0.800 0.865 0.861 0.856 0.856 FF 20 0.875 0.871 0.866 0.849 0.847 0.841 FF 20 0.437 0.718 0.840 0.858 0.873 0.876 0.880 FF 20 0.880 0.876 0.874 0.871 0.869 0.867 FF 20 0.866 0.864 0.863 0.862 0.857 0.851 FF 20 0.866 0.864 0.863 0.862 0.857 0.851 	EFF 20	0.838	0.836	U.834	0.032	0.875	D.877	0.877
FF 20 0.875 0.871 0.800 0.849 0.847 0.841 FF 20 0.854 0.852 0.850 0.849 0.847 0.841 FF 20 0.437 0.718 0.840 0.868 0.873 0.876 0.880 FF 20 0.880 0.878 0.876 0.874 0.871 0.869 0.867 FF 20 0.866 0.864 0.863 0.862 0.857 0.851 OT	EFF 20	0.519	0.755	U.800	0.865	0.861	0.858	0.856
FF 20 0.854 0.852 0.840 0.846 0.873 0.876 0.880 FF 20 0.437 0.718 0.876 0.874 0.871 0.869 0.867 FF 20 0.866 0.864 0.863 0.862 0.857 0.851 FF 20 0.866 0.964 0.863 0.862 0.857 0.851 	EFF 20	0.875	0.871	U, 800 A 460	0 849	0.847	0.841	
PF 20 0.437 0.716 0.676 0.674 0.671 0.669 0.667 PF 20 0.866 0.864 0.863 0.862 0.857 0.851 0.677 COT 0.866 0.864 0.863 0.862 0.857 0.851 0.857	EFF 20	0.854	0.852	- <u>0.850</u>	0.868	0.873	0.876	0.880
FF 20 0.866 0.864 0.863 0.862 0.857 0.851	EFF 20	0.437	U./10	0.040	0.874	0.871	0.869	0.867
· · · · · · · · · · · · · · · · · · ·	EFF 20	0.880	U.8/0	0 863	0.862	0.857	0.851	
	EFF 20	Q.865	U. 804	0.000				
•	EOT							
· · · · · · · · · · · · · · · · · · ·								
·								
·					_			
•								
•								
•								
•								
•								
•								
•								
				•				
	1							
	4							
	J							
	4							

ODER NEL PRATE IN OF PHOR QUALNY

1

-

1			1						
							TA		
	270	0	TURBINE FLO	W FUNCTION	75.	TH, AND DE			
	BE TA	3	10.	20.	30.	40.	50.	60.	70.
	RPM	15	80.	90.	100.	110.	120.	130.	140.
h	RPM	15	150.			1 60	1 70	1 80	2.00
1	PR	20	1.10	1.20	1,40	2 80	3.00	3,20	3.40
	PR	20	2.20	2.40	4.00	4.20	4.40	4.60	
Ľ	TEE	20	68,255	82.286	83.415	83.415	83.415	83.415	83.415
	TFF	20	83.415	83.415	83.415	83.415	83.415	83.415	63.415
	TFF	20	83.415	83.415	83.415	83.415	83.410	BJ.415 A1 115	81.115
	TFF	20	57.320	75.666	81 115 81 115	81,115	BI.115	81.115	81.115
	TFF	20	61.110 A1 115	A1.115	81.115	81.115	81.115	81.115	
	TFF	20	49.673	68.861	79.254	79.254	79.254	79.254	79.254
	TFF	20	79.254	79.254	79.254	79.254	79.254	79.254	/9.234
	TFF	20	79.254	79.254	79.254	79.204	79.234	77.742	77.742
	TFF	20	44.944	63.139 77 742	77.020	77.742	77.742	77.742	77.742
	TFF	20	77 742	77.742	77.742	77.742	77.742	77.742	
- I-	TFF	20	42.231	58.847	74.137	76.517	76.517	76.517	76.517
	TFF	20	76.517	76.517	76.517	76.517	76.517	76.517	76.317
I	TFF	20	76.517	76.517	76.517	76.517	75.517	75.550	75.550
	TFF	20	40.912	55.833 75 550	75 550	75.550	75.550	75.550	75.550
	IFF Tee	20	75.550	75.550	75.550	75.550	75.550	75.550	
1	TEE	20	40.566	53.859	68.812	74.095	74.751	74.769	74.769
;	TFF	20	74.769	74.769	74.769	74.769	74 769	74.769	/4./09
	TFF	20	74.769	74.769	74.769	74.769	74.709	74.709	74.192
	TFF	20	40.864	52.736	74 192	74.192	74.192	74.192	74.192
	TEE	20	74.192	74.192	74.192	74.192	74.192	74.192	
	TFF	20	41.638	52.267	65.456	71.369	72.796	73.497	73,780
	TFF	20	73.780	73.780	73.780	73.780	73.780	73,780	73.780
	TFF	20	73.780	73,780	73.70U 64 521	70.363	71,930	72.814	73.490
	TFF	20	42.717	73 519	73.519	73.519	73.519	73.519	73.519
	TFF	20	73.519	73.519	73.519	73.519	73.519	73.519	
	TFF	20	44.132	52.746	64.009	69.668	71.297	72.268	73.205
Į.	TFF	20	73.396	73.396	73.396	73.396	73.396	73.396	75.000
- 3	TFF	20	73.396	73,390	63.875	69.282	70.895	71.919	73.005
	125	20	43.774	73.400	73,400	73.400	73.400	73.400	73.400
1	TFF	20	73.400	73.400	73.400	73.400	73.400	73.400	
1	TFF	20	47.558	54.551	64.063	69.184	70.743	71.788	72.943
	TFF	20	73.422	73.520	73.520	73.520	73.520	73.520	/3.020
	TFF	20	73.520	73.320	64 526	69.345	70.826	71.873	73.037
	111	20	73 573	73.741	73.746	73.746	73.746	73.746	73.746
	TEE	20	73.746	73.746	73.746	73.746	73.746	73.746	70 207
	TFF	20	52.868	57.218	65.223	69.734	71.123	72.157	73.207
	TFF	20	73.842	74.048	74.070	74.070	74.070	74.070	/4:0/0
- • [TFF	20	74.070	74,070 20	30.	40.	50.	60.	70.
	RPM	15	A Ó.	90.	100	110.	120.	130.	140.
	RPM	15	150.						
t	PR	20	1.10	1.20	1.40	1.60	1.70	1.60	2.00
	PR	20	2.20	2.40	2.60	4.20	4.40	4.60	.
	PR	20	3.60 46.554	3.00 59,744	66.417	66.427	66.427	66 427	66 427
ł	TTT	20	65.427	66 427	66.427	66.427	66.427	66.427	65.427
	TFF	20	66.427	66.427	66.427	66.427	66.427	66.427	

.

		41 OF 5		65 717	66 427	66 427	66 427	66.427	
TFF	20	41.200	55.///	66 427	66.427	66.427	66.427	66.427	
188	20	00.427 66 497	66 427	66.427	66.427	66.427	66.427		
TEE	20	37 670	52.242	64.290	E6.427	66.427	66.427	66 427	
TFF	20	66.427	66.427	66.427	66 427	66.427	66.427	66.427	
TEE	20	66.427	66.427	66.427	66.427	66.427	66.427		
TEE	20	35.530	49.451	62.558	66 278	66.427	66.427	66.427	
TFF	20	66.427	66.427	66.427	66.427	66.427	66.427	66.427	
TFF	20	66.427	66.427	66.427	66.427	66.427	66.427	EE 427	
TFF	20	34.501	47.430	60.852	65.694	66.374	00.427 66 427	66 427	
TFF	20	66.427	66.427	66.427	66.427	66.427	66 427	00.427	
TFF	20	65.427	- 60.427 	BO.427	64 877	66 007	66 415	66 427	
166	20	34.2/2	66 427	66 427	66.427	66.427	66.427	66.427	
TEE	20	66 427	66.427	6C.427	66,427	66.427	66.427		
TEE	20	34.596	45.357	58.072	63.971	65.408	66.160	66.387	
TFF	20	66.387	66.387	66.387	66.387	66.387	66.387	66.387	
TFF	20	66.387	66.387	66.387	66.387	66.387	66.387		
TFF	20	35.099	44.793	56.747	62.716	64.335	65.320	65.919	
TFF	20	65.919	65.919	65 919	65.919	65.919	65.919 CR A(A	818 60	
TFF	20	65.919	65.919	65.919	60.919 61 540	50.919 60 065	64 365	65 330	
TFF	20	35.854	44.574	55,687 65 400	65 400	65 400	65 400	65 400	
TEE	20	65.400	65.400	65,400 65,400	65 400	65.400	65.400	*****	
TFF	20	65.400	44 568	54 935	60 578	62.303	63.470	64 666	
1 188	20	50.017	64 918	64.918	64.918	64.918	64.918	64.918	
TEE	20	64 918	64.918	64.918	64.918	64.918	64.918		
TEE	20	37.966	45.050	54.503	59.865	61.563	62.744	64.070	
TFF	20	64.514	64.535	64.535	64.535	64.535	G4.535	64.535	
TFF	20	64.535	64.535	64.535	64.535	64.535	64.535		
TFF	20	39.203	45.636	54.319	59.365	61.005	62.172	63.003	
TFF	20	64.114	64.217	64.217	64.217	64.217	64.217	04.217	<u> </u>
TFF	20	64.217	64.217	64.217 54 270	59 096	60 659	61 793	63,175	
TFF	20	40.399	40.414	64 000	64 000	64.000	64,000	64.000	
THE	20	63.799	63.990 64 000	64 000	64,000	64,000	64.000		
HTTP:	20	42 086	47 339	54.635	59.020	60.494	61.583	62.929	
TEE	20	63.576	63.834	63.863	63.863	63.863	63.863	63.863	
TEF	20	63 863	63,863	63.8 63	63.863	63.863	63.863		•
TEE	20	43.622	48.382	55.057	59.113	60.491	61.527	62.812	
3 TFF	20	63.455	63.739	63.799	63.799	63.799	63.799	02.128	
TFF	20	63 799	63.799	63.799	63.799	63.799 En	0J./99 En	70	
RPM	15	10.	20.	30.	40.	120	130	140.	
RPM	15	80.	90.	100.		120.			
RPM	15	150.	1 20	• 1.40	1.60	1.70	1.80	2.00	
PR	20	2 20	2.40	2.60	2.80	3.00	3,20	3.40	
	20	3 60	3.80	4.00	4.20	4.40	4.60		
111	-20	31.643	40.636	45.229	46.499	46.499	46.499	46 499	
TFF	20	46.499	46.499	46.499	46.499	46.499	46.499	46 . 499	
TFF	20	46 499	46.499	46.499	46 499	46.499	46.499	46 400	
TFF	20	28.946	38.494	45.552	46.499	46.499	46.499	40.499	
TFF	20	46.499	45.499	45.499	46.499	40.499 Ac 400	40,439 Ag Agg		
TFF	20	46.499	45.499	46.499	40.499	40,433 As 100	46.499	46.499	
TFF	20	27.234	30,/33 48 400	44,000 16 160	46 490	46.499	46.499	46 499	
TFF	- 20	40.499	40.497 <u>Ar 100</u>	46 499	46, 499	46.499	46.499		
	20	40.47# 26.354	35.425	43.814	46.317	46.499	46.499	46.499	
TEE	20	46.499	46.499	46.499	46.499	46.499	46.499	46.499	
TEE	20	46.499	46.499	46 499	46.499	46.499	46.499		
111	20	26.111	34. 574	43.034	46.015	46.451	46.499	46.499	
TFF	20	46.499	46.499	46.499	46.499	46.499	46.499	46.499	
								and the second secon	and the second state

ļ

ORIGEMAL FREE (3) OF POCR QUALITY

TFF 20	46.499	46.499	46.499	46.499	46.499	46.499	46 499	
TFF 20	26.350	34.136	42.408	45.672	45.294	40,497	46.199	
TFF 20	46.499	46.499	46.499	46.499	46.499	40.433	40.400	
FF 20	46.499	46.499	46.499	46.499	40.499	40.433	46 499	
FF 20	26.936	34.033	41.960	45.349	40.097	40.441	46 499	
FF 20	46.499	46.499	46.499	46.499	40.499	40,433	40.400	
FF 20	46.499	46.499	46.499	46.499	46.499	40.433	46 499	
FF 20	27.769	34.210	41.689	45.080	45.904	46.344	46 499	
FF 20	46.499	46.499	46.499	46.499	46.499	40,499	40.400	
FF 20	46.499	46.499	46.499	46.499	40.499	40.433	46 499	
FF 20	28.776	34.603	41.580	44.891	43.740	40.243	46 499	
FF 20	46.499	46 . 499	46.499	46.499	40.499	40.435	40.400	
FF 20	46.499	46.499	46.499	46.499	46.499	40.499	46 499	
FF 20	29.900	35.163	41.615	44,784	45.637	40.102	46 499	
FF 20	46.499	46.499	46.499	46.499	40.499	40,499	40.400	
FF 20	46.499	46.499	46.499	40.499	40,499	40.499	46 498	
FF 20	31.101	35.846	41.770	44.754	43, 382	40.109	46 499	
TFF 20	46.499	46.499	46.499	46.499	46.499	40,433		
TFF 20	46.499	46.499	46.499	45.499	46.499	40.499	46 493	
FF 20	32.345	36.617	42.022	44.795	43.3/9	40.009	46 499	
FF 20	46 499	46.499	46.499	46.499	40.499	40,433 Ag Agg		
TFF 20	46.499	46.499	46.499	46.499	40,499	40.499	46 491	
TFF 20	33.607	37.446	42.350	44.895	40,02J	40.101	46.499	
TFF 20	46.499	46.499	46.499	46.499	46.499	46 499	40.400	
TFF 20	46.499	46.499	46.499	46.499	40,433	40.433	46.492	
TFF 20	34.868	38.310	42.732	43.042	45.705	46 499	46.499	
TFF 20	46.499	46.499	46.499	40.499	40,433	46 499		
TFF 20	46.499	46.499	46.499	40.499			46.496	
TFF 20	36.091	39.187	43.151	43.222	40.011	46 499	46.499	
TFF 20	46.499	46.499	46.499	40,499	40.433	46.499		
TFF 20	46.499	46.499	46.499	40.499	40.435			
EGT								
					<u></u>		•	
		<u> </u>						
								·
			•					
			•					
			•					
		,	•					
			•					
	•		•					
	•	,	-					
	•		•					
	•	· · · · · · · · · · · · · · · · · · ·	•					
	•	· · · · · · · · · · · · · · · · · · ·	•					
	•	· · · · · · · · · · · · · · · · · · ·	•					
	•		•					
	•	, ,	•					
	•	· · · · · · · · · · · · · · · · · · ·	•					
	•		•					
		· · · · · · · · · · · · · · · · · · ·	•					
	•		•					

PREMOVE CLEARFILES
OLD /NASAPT/NASAPART
FRN

#Q#62 1#/2#/83 1#.282

**************************************	•
P * A * R * T	
AXIAL OR RADIAL TURBINE? 1=RADIAL, & OR CR=AXIAL =1	
DESCRIPTION OF INPUT VARIABLES IN PART PROGRAM (NAMELIST INPUT)	
UNITS:TTIN=DEG R.PTIN=PSIA,W=PPS,H=BTU/LBM.N=RPM	
MAPRANGE(ARRAYVALUESMUSTBEINASCENDINGORDERNSPDS=15NOOFSPEEDLINESDESIRED(MAX=15)APCNCARRAYOFPERCENTCORRECTEDSPEEDSNPR=28NOOFPRESSURERATIOSDESIRED(MAX=28)APRARRAYOFPRESSURERATIOSMAX=28)APRARRAYOFPRESSURERATIOSNAR=6NOOFNOZZLEAREARATIOS(MAX=6)ARNARRAYOFFIRSTSTAGENOZZLEAREARATIOSNSTG=6NOOFTURBINESTAGES(MAX=6)	
INTEGER SWITCHES JCOOL =& COOLING FLOW SWITCH(&=UNCOOLED,1=COOLED)	
DESIGN POINT VALUES OF:DHQTDSPECIFIC WORK OUTPUT DIVIDED BY TTINETATTDTURBINE TOTAL-TO-TOTAL EFFICIENCYTFFDTURBINE INLET FLOW FUNCTION (TFF=W*SQRT(TTIN)/PTIN)XNRTDTURBINE CORRECTED SPEED(N/SQRT(TTIN))PSIDAVERAGE TURBINE PITCH LINE LOADING PSID=DHQT/(2*(U/SQRT(TTIN)**2/GJ))/NSTGANGSWXEXIT PITCH LINE SWIRL ANGLE(*COUNT-ROT)XMZXDEXIT PITCH LINE AXIAL MACH NUMBER TTINTURBINE INLET TOTAL TEMPERATURE PTINPTINTURBINE INLET TOTAL PRESSRUE FARGDGEOMETRYSPECIFICATIONS: RADR2RADIUS RATIO AT ROTOR EXIT TO INLET) RHQRT3RADIUS RATIO AT ROTOR EXIT(FIRST GUESS)	
NAMELIST INPUT NSPDS = 15, APCNC (I)= 1 10.0000, 5 50.0000, 9 90.0000, 13 130.0000, 13 130.0000, NPR 20, 1 1.0000, 13 130.0000, 140.0000, 150.0000, NPR 20, APR (I)= 1 1.1000, 1.7000, 1.8000, 2.4000, 2.6000,	48.9899, 89.9999, 123.8999, 1.6989, 2.2099, 3.9999,

28

.

Charles and B Charles and Charles A

					2 8244
13	3.200	σ,	3.4000,	3.6000,	1 LAAA
17	4.888	0,	4.2000,	4.4000,	4.0000,
NAR =	1.				
APN (T) =				-
	้ เสสส	Я.	ø	ø. ,	1 9 . 1
5	a		ø.		
5	ล่าวล	a`	1.1448.	1. <i>0000</i> ,	1.56555,
1	1		Ø.		
M216 -	1,	a a1933a	FTATT	D= Ø.868	3666,
DHUID -		D.D. 330500	YNRTD	= 1718. <i>60</i>	3999,
TEED =		0.3333000	YM7Y0	B .221	3 <i>88</i> 8.
PSID =		0.45/100			
ANGSWX=		10.	54000	- 9	
PTIN =		37.930000	PARGU	- <i>a</i> 29	n a a a
ETAN =		0.940000	, R3QR2	= 0.27	
RHORT3=		8.283888	,		
END NAME	LIST	INPUT			
ENTER CHA	NGES T	O NAMELIS	T INPUT		
SINPUTS					
NAMELIST		INPUT		•	
MCDDC A	15				
ADONO (T	1				
AFUNCIAL		ra s	28 8000.	30.0000,	40.0200 .
1		10, 10	5 a a a a a a a	78.8898.	80.0000,
5	30.000	10, Tai 1	30.0000, aa aaaa	110 8948	120.0000.
9	90.000	10, L		150 0000,	
13 1	30.000	1Ø, 1	40.0000,	130.0000,	
NPR =	28,				
APR (I)=				1 6888
1	1.100	7Ø,	1.2200,	1.4888,	2 2000
5	1.784	JØ.	1.8033,	2.0000.	2.2000,
<u> </u>	2.488	80.	2.6000,	2.8000,	3.8000,
13	3.20	88.	3.4000,	3.6000,	3.6000.
17	4.99	80.	4.2888.	4.4000,	4.6000,
· • • • •	1	,	•••••		
AKN ()		aa	a	ø	Ø.,
1	1.00	. 0.0	α, ,		
5	В.	'		1 9999	1.0000.
1	Ø.33/	88,	1.1440,	1.0000,	••••••
NSTG =	1,	JCOOL =	Ø		
DHQTD =		Ø.Ø4933Ø	, EIAI		
TEED =		Ø.3395ØØ	, XNRT	D = 1/10.02	
PSID #		Ø.4871ØØ	i, XMZX	D = 18.24	
ANGSVX =		ø.	, TTIN	- 850.04	, ממממ
PTIN =		37.930000	FARG	D = 10.	•
ETAN =		8.948888	R 3QR	2 = Ø.29	1888,
EIAN -		8.299999	,		
		INDIIT			
ENU NAM	FF131	1000	.		
MASA UUTI	PUI UN	160-10,16			

.

.

į

Original page 19 Of Poor Quality

260	1	TURBINE EFFI	CIENCY VS.	TR, NED,				
209 FTA	้า	50.		~~	40	50.	60.	70.
PM	15	10.	20.	30.	110	120	130	140.
PM	15	80.	90.	100.				
PM	15	150.		1 40	1.60	1.70	1.80	2.00
2	20	1.10	1.20	2 60	2.80	3.00	3.20	3.40
R	20	2.20	2.40	4.00	4.20	4.40	4.60	- 142
R	20	3.60	- 262	0.197	0.169	0.160	0.152	0.142
FF	20	0.354	0.128	0.123	0.119	0.116	0.113	0.111
FF	20	0.134	0 107	0.105	0.104	0.102	0.101	n 277
FF	20	0.109	0.496	0.380	0.328	0.311	0.298	0.218
FF	20	<u> </u>	0.251	0.242	0.234	0.228	0.223	0,210
FF	20	0.214	0.211	0.207	0.205	0.202	0.200	0.405
FF	20	0.825	0.687	D.545	0.475	0.452	0.435	0.321
FF	20	0.384	0.368	0.355	0.344	0.335	0.320	
FF	20	0.315	0.310	0.306	0.302	0.296	0.557	0.522
FF	20	0.831	0.817	0.684	0.606	0.579	0.427	0.419
rr FFF	20	0.497	0.477	0.461	0.448	0.43/	0.385	
IFF IFF	20	0.412	0.405	0.399	0.394	0.509	0.666	0.628
	20	0.491	0.861	0.790	U.717	0.531	0.520	0.510
SFF	20	0.600	0.577	0.559	0.344	0.476	0.471	
FFF	20	0.502	0.494	0.487	0.401	0.778	0.756	0.720
EFF	20	0.0	0.772	U.853	0.631	0.617	0.605	0.594
EFF	20	0.591	0.667	0.047	0.562	0.556	0.550	
EFF	20	0.585	0.575	0,009	0.856	0.841	0.824	0.793
EFF	20	0.0	0,445	0.000	0.708	0.693	0.681	0.670
EFF	20	0.766	<u> </u>	- D 542	0.635	0.628	0.621	0.945
EFF	20	0.660	0.001	0.786	0.868	0.870	0.864	U. 843
EFF	20	0.0	0.0	0,788	0.773	0.759	0.746	U.739
EFF	20	0.825	0.000	0,706	0.699	0.691	0.685	0 872
EFF	20	U. 724	0.0	0.591	0.825	0.857	0.0/0	0 788
EFF	20	0.0	0.850	0.837	0.824	0.811	0.799	•••••
EFF	20	0.778	0,770	0.761	0.754	0.747	0.741	0.865
EFF	20	0.0	0.0	0.121	0.705	0.700	0 838	0.830
211		0.874	0.873	0.867	0,857	0.040	0.788	
EFF	20	0.821	0.814	0.807	0.800	0./34	0.725	0.817
CEF	20	0.0	0.0	0.0	U.402	0.868	0.863	0.857
EFF	20	0.854	0.870	0.874	0.0/2	A29	0.824	
FFF	-20-	0.851	0.845	0.839	0.034	0.330	0.522	0.709
FFF	20	0.0	0.0	0.0	0.0	0.868	0.869	0.867
EFF	20	0.792	0.833	U. 833.	0.855	0.851	0.847	
EFF	20	0.865	0.862	U.830	<u> </u>	0.0	0.122	0.510
EFF	20	0.0			0,828	0.843	0.853	0,858
EFF	20	0.670	0,753	0.861	0.860	0.859	0.857	0 122
EFF	20	0.860	0.601	0.00	0.0	0.0	0.0	0.132
EFF	20	0.0			0.751	0.785	0.809	U.024
EFF	20	0.452	0.007	0.845	0.848	0.850	0,851	0.0
EFF	20	0.834	0.040	0.0	0.0	0.0	0.0	0.757
EFf	20	0.0	0.353	0.517	0.615	0.681	U. /2/	<u> </u>
EFF	20	<u> </u>	- 0 795	0.806	0.815	0.821	U. 820	
EF	F 20	U.//₩						
EO.	T							
L								
4								
1								
ł								

27	0	TURBINE FLOW	FUNCTIO	N VS. PR, F	PM, AND BE	TA		
BETA	1	50.	~~		40	50	60	70
RPM	15	10.	20.	30.	40.	50.	6U.	70.
RPM	15	80.	90.	100.	110.	120.	130.	140.
RPM	15	150.				1 70	1 00	2 22
PR	20	1.10	1.20	1,40	1.60	1.70	1.80	2.00
PR	20	2.20	2.40	2.60	2.80	3.00	3.20	3.40
PR	20	3.60	3.80	4.00	4.20	4.40	4,60	
TFF	20	0.217	0.278	0.327	0.339	0,339	0.339	0.339
TFF	20	0.339	0.339	0.339	0.339	0.339	0.339	0.339
TFF	20	0.339	0.339	0.339	0.339	0.339	0.339	
TFF	20	0.204	0.271	0.324	0.338	0.339	0.339	0.339
TFF	20	0.339	0.339	0.339	0.339	0.339	0.339	0.339
TFF	20	0.339	0.339	0.339	0.339	0.339	0.339	
TFF	20	0.182	0.259	0.319	0.337	0.339	0.339	0.339
TFF	20	0.339	0.339	0.339	0.339	0.339	0.339	0.339
TFF	20	0.339	0.339	0,339	0.339	0.339	0.339	
TFF	20	0.147	0.241	0.312	0.335	0.339	0.339	0.339
TEE	20	0.339	0.339	0.339	0.339	0.339	0.339	0.339
TEE	20	0.339	0.339	0.339	0.339	0.339	0.339	
TEE	20	0.085	0.215	0.302	0.331	0.337	0.339	0.339
TEE	20	0 339	0 339	0.339	0.339	0.339	0.339	0.339
	20	0.339	0 339	0.339	0.339	0.339	0.339	
TEE	20	0.035	0 175	0.287	0.325	0 333	0.338	0.339
TTT	-20	0.028	0.1/0	0.207	0.020	<u> </u>	0.339	0 339
	20	0,339	0.339	0.339	0.009	0.339	0.339	0.000
	20	0.339	0.339	0.339	0.339	0.326	0.334	0 339
	20	0.030	0.107	0.204	0.314	0.320	0.339	0.339
	20	0.339	0.339	0.339	0.339	0.339	0.339	0.009
TFF	20	0.339	0.339	0.339	0.339	0.339	0.339	0 337
TFF	20	0.035	0.035	0.230	0.299	0.310	0.320	0.337
TFF	20	0.339	0.339	0.339	0.339	0.339	0.339	0.339
TFF	20	0.339	0.339	0.339	0.339	0.339	0.339	<u> </u>
TFF	20	0.039	0.039	• 0,176	0.274	0.298	0.314	0.332
TFF	20	0.338	0.339	0,339	0.339	0.339	0.339	0.339
TFF	20	0.339	0.339	0.339	0.339	0.339	0.339	
TFF	20	0.043	0.043	0,070	0.234	0.269	0.293	0.321
TFF	20	0.334	0.339	0.339	0.339	0.339	0.339	0.339
TFF	20	0.339	0.339	0.339	0.339	0.339	0.339	
TFF	20	0.047	0.047	0.047	0.168	0.223	0.259	0.301
TFF	20	0.323	0.334	0.338	0.339	0.339	0.339	0.339
TFF	20	0.339	0.339	0.339	0.339	0.339	0.339	
TFF	20	0.052	0.052	0.052	0.052	0.141	0.201	0.268
TFF	20	0.303	0.322	0.332	0.337	0.339	0.339	0.339
TFF	20	0.339	0.339	0.339	0.339	0.339	0.339	
TFF	20	0.056	0.056	0.056	0.056	0.056	0.090	0.211
TFF	20	0.268	0.300	-0.318	0.329	0.335	0.338	0.339
TEE	20	0.339	0.339	0.339	0.339	0,339	0.339	
TFF	20	0.060	0.060	0.060	0.060	0.060	0.060	0.100
TFF	20	0.204	0.258	0.290	0.310	0.323	0.331	0.335
TFF	20	0.338	0.339	0.339	0.339	0.339	0,339	
TFF	20	0.065	0.065	0.065	0.065	0.065	0.065	0.065
TFF	20	0.076	0.181	0.239	0.274	0.297	0.313	0.323
TFF	20	0.329	0.334	0.337	0.338	0.339	0.339	
EOT								
1								

.

: .) 4

7.0 ANALYTICAL BACKGROUND

The following section has been written in order to give the user a general idea of the type of turbine representation used in the program and the approach used in the derivation of the equations. Details of the derivations together with sample calculations may be found in the Monthly Progress Reports (e.g., References 10, 11, and 12).

7.1 TURBINE MAP REPRESENTATION

Typically, cycle deck entry to a turbine map is through corrected speed, N/SQRT(T), and actual energy, DH/T, with turbine flow function, W*SQRT(T)/P, and total-to-total efficiency being output. Total-to-total pressure ratio is sometimes used instead of actual energy as the second map entry.

The discussion of the turbine map representation can be conveniently subdivided into two parts: the flow and the efficiency.

The flow model is illustrated by the three sketches shown in Figure 4. The two curves on the top in the figure are used to generate the flow representation on the bottom. Sketch 4-1 shows the turbine stage characteristic (i.e., a plot of turbine loading against flow coefficient). Sketch 4-2 shows the dependence of the maximum value of the turbine flow function on corrected speed. With the corrected speed and DH/T known, the stage loading can be calculated, and the flow coefficient obtained from Sketch 4-1. Once the flow is choked (i.e., the choked branch of the stage characteristic), the flow coefficient remains constant for that speed. Sketch 4-2 is next used to obtain the maximum value of the turbine flow function at the corrected speed of interest. The value of the turbine flow function is then calculated. The equations used are as follows:

 $U/A_{t} = (2\pi R/60) (N/\sqrt{rR_{g}g_{o}T})$

$$\Psi = (DH/T) / [2(U/\sqrt{T})^2 / g_o J]$$

$$C/A_t = (\phi/Cos \alpha_2)/(U/A_t)$$

TFF = (TFF)_{Bax}
$$\frac{C/A_t \left(1 - \frac{r-1}{2} \left(\frac{C}{A_t}\right)^2\right)^{\frac{1}{r-1}}}{\left(\frac{2}{r+1}\right)^{\frac{r+1}{2}(r-1)}}$$

Figure 4. Turbine Flow Representation.

ORIGINAL PAGE IS

DE/T = turbine stage specific enthalpy drop divided by into temperature, Btu/lbm R N/SOFT(T) = corrected speed, RPM/SORT(R)	
N/SORT(T) = corrected speed, RPM/SORT(R)	t total
R = pitch line radius, ft	
C = velocity, ft/sec	
A _t = speed of sound at inlet total temperature, ft/sec	
TFF = inlet turbine flow function, lbm/sec*SQRT(R)/psia	
Cos(a ₂) = nozzle exit angle	

The value of $\cos(\alpha_2)$ is obtained from the design point information as is the value of the pitch line radius.

The efficiency model is illustrated by the five sketches shown in Figure 5. The first three curves in the figure are used to generate the last two sketches. The "backbone" of the turbine map shown in Sketch 5-4 is the locus of the peak efficiency at each value of DH/T. This locus is obtained from Sketch 5-1, which shows turbine pitch line loading along the map "backbone" as a function of DE/T. The "backbone" efficiencies are obtained from Sketch 5-2. This sketch gives the "backbone" loss (defined as the difference between the ideal and actual values of DE/T) as a funciton of DE/T. With the "backbone" loading and efficiencies known at each DE/T, Sketch 5-3 is used to evaluate the "off-backbone" loss and to obtain the efficiency at any value of corrected speed. When the turbine "off-backbone" loss is plotted with the coordinates shown in Sketch 5-3, the resulting curves are nearly linear at any given DE/T. These five curves, three univariate and two bivariate, are sufficient to define the turbine map. Note that as shown on Sketch 5-5, the design point does not generally fall on the "backbone" but is seperated from it by a "stand-off" distance which is calculated from design point information.

The analytical basis for the five correlating curves is discussed in the following sections.

7.2 TURBINE FLOW MODEL

The turbine stage characteristic serves as the basis for modeling the turbine flow. An analytical expression for the stage characteristic of a turbine can be obtained by using the continuity, energy, and angular momentum equations, together with a number of relationships from the pitch line vector diagram. In deriving this equation, it is assumed that the pitch line flow angles at nozzle and bucket exit are invariant, and that the axial velocity ratio across the bucket is constant.

Figure 5. Turbine Efficiency Representation.

......

.*

This later assumption is reasonable for incompressible or low Mach number (M 0.25) flows. It should be emphasized, however, that the final correlations have no such restrictions.

The stage characteristic for a single-stage turbine with the above assumptions can be written in the form

$$\Psi = \frac{\varphi}{2} \left(t_{0} t_{0} d_{1} + \frac{\zeta_{13}}{\zeta_{2}} \frac{R_{3}}{R_{2}} t_{0} B_{3} \right) - \frac{1}{2} \left(\frac{\zeta_{1}}{R_{2}} \right)^{2}$$
(1)

where

.

 $\psi = DH/(2U_2^2/g_J)$, Turbine stage Loading

- C₂ = Meridional velocity component
 - = C_{z_2}/U_2 , Flow coefficient
- a₂ = Nozzle exit flow angle
- β_3 = Bucket exit flow angle
- R = Turbine Pitch Line Radius

Selecting a reference point and assuming that

$$\tan \alpha_2 + \frac{C_{23}}{C_{22}} + \frac{R_3}{R_2} + \tan \beta_3 = a \text{ constant},$$

this equation may be written as

$$\frac{\Psi}{\Psi_{R}} = \frac{\Psi}{\Phi_{R}} + \frac{1}{2\Psi_{R}} \begin{pmatrix} R_{3} \\ R_{2} \end{pmatrix}^{2} \begin{pmatrix} \Psi \\ \Psi_{R} - 1 \end{pmatrix}$$
(2)

For unchoked flow, the reference point (indicated by the subscript R) was selected at the design point on the turbine map. For choked flow, the reference point was selected at the critical point (subscript CRIT) on the turbine map. The critical point is located at the value of DE/T at the reference speed (e.g., 1002) where nozzle choking first occurs. For a variable-geometry turbine, the angle m2 is calculated from the input value of nozzle area ratio.

The equation used for the normalized flow coefficient is

$$\frac{c}{\Phi_{R}} = \frac{C_{L}/A_{L}}{(C_{L}/A_{L})_{R}} \frac{(K/\sqrt{L})_{R}}{K/\sqrt{L}} = \frac{C/A_{L}}{(C/A_{L})_{R}} \frac{(K/\sqrt{L})_{R}}{K/\sqrt{L}}$$
(3)

The valority ratio, C/A₁, for a point at a selected speed is determined by calculating a pseudoarea at which the Mach number is assumed to be unity (i.e., at the maximum turbine flow function for that speed). This pseudoarea is assumed to be constant for that speed. The Mach number (velocity ratio) at may point on the speed line is then calculated from the usual flow function equations. By definition, the pseudoarea varies with speed in direct proportion to the maximum turbine flow function variation with speed. This method

36

. ..

of calculating the flow coefficient was found to give better results than that obtained using the first stage nozzle throat area for all speeds. For the case in which the first stage nozzle is choked, the two procedures are identical.

Typically, the calculated and measured values of velocity ratio are within about 6%, with the larger errors occurring at the higher Each numbers. The predicted value of the normalized flow coefficient intercept (at DH/T=0) are within about 5% of experimentally derived values. These errors combine to yield flow errors on the order of 5% for nominal area maps (i.e., nozzle area ratios equal to 1). Slightly higher values may occur for other stator settings.

A typical comparison between measured and calculated values of the turbine flow function is shown in Figure 6. This figure is for test turbine number 25 in Table 1. The maximum error shown on this figure is about 2.47 and occurs at the lower end of the test data. This type of plot was used in obtaining the error estimates given above.

7.3 TURBINE LOSS MODEL

There are four key steps in the development of the equations governing the turbine off-design loss model. These steps are

- 1. The development of an equation giving the turbine total-to-total efficiency at a general point in terms of nozzle and bucket efficiencies coupled with a semiempirical loss term due to the departure of the rotor incidence angle from the optimum.
- 2. The transformation of the semiempirical incidence angle loss law so as to eliminate the explicit occurrence of the incidence angle by introducing the stage loading.
- 3. The differentiation of the resulting efficiency expression in order to obtain the locus of peak efficiencies. This peak efficiency ridge then becomes the "backbone" of the map.
- 4. The substitution of the peak efficiency relationships back into the general efficiency equation in order to obtain an expression for the "off-backbone" loss.

The development of the efficiency expression proceeds from the (h,s) diagram for adiabatic flow through a two-dimensional turbine stage as shown in the following sketch.

Figure 6. Comparison of Measured and Calculated Values of Inlet Turbine Flow Function.

38

Enthalpy-Entropy Diagram for a Turbine Stage

Using the station numbers shown in the above sketch, the definition of turbine total-to-total efficiency may be written in the form:

$$n_{TT} = \frac{\Delta H}{\Delta H + \frac{T_{03}}{T_3} (h_3 - h_{3s}) + \frac{T_{03s}}{T_2} (h_2 - h_{2s})}$$
(4)

By definition, the nozzle efficiency is equal to the ratio of the actual nozzle exit kinetic energy to the ideal nozzle exit kinetic energy. A similar definition in terms of relative velocities holds for the bucket efficiency. For off-design calculations at any incidence angle (i), an additional loss term must be included, i.e.,

$$h_3 - h_{3s} = \left(1 - \frac{1}{\eta_B}\right) \frac{W_3^2}{2g_0 J} + \left(1 - \cos^2(i)\right) \frac{W_2^2}{2g_0 J}$$
 (5)

where

n_N = nozzle efficiency n_B = bucket efficiency W₂ = bucket inlet relative velocity W₃ = bucket exit relative velocity The semiempirical incidence angle loss law is based on the assumption that the kinetic energy of the component of velocity normal to the optimum incidence angle is lost. This is a fairly standard assumption (see, for example, Reference 4). Powers other than 2 are frequently used on the cosine.

Before introducing the incidence angle loss term into the efficiency expression, it was transfored into the following expression

$$\left(1-\cos^{2}(\lambda)\right)\frac{W_{2}^{2}}{a_{co}^{2}}=\frac{U_{1}^{2}}{a_{c}^{2}}\cos^{2}\left(\frac{4}{3}a_{c}-1\right)$$
(6)

The stage characteristic was then used to substitute for flow coefficient in terms of stage loading. The substitution of this results into the expression for efficiency yielded, after simplifying, the following results.

$$\psi\left(\frac{1}{\eta_{rr}}^{-1}\right) = A\left(2\psi + (R_{3}/2_{L})^{2}\right)^{2} + B\left(\psi - \psi_{e_{1}}\right)^{2}$$
(7)
where
$$A = \frac{1}{4} = \frac{1}{4} \frac{\left[\frac{1}{2} - \frac{1}{3}\left(\frac{1}{\eta_{b}}^{-1}\right)\left(\frac{c_{s_{3}}}{3_{2}}\right)^{2} + \frac{1}{\zeta_{s_{3}}} + \frac{1}{T_{2}}\left(\frac{1}{\eta_{b}}^{-1}\right)\left(\frac{1}{\zeta_{s_{3}}}\right)^{2} + \frac{1}{\zeta_{s_{3}}} + \frac{1}{\zeta_{s_{3}}}\left(\frac{1}{\eta_{b}}^{-1}\right)\left(\frac{1}{\zeta_{s_{3}}}\right)^{2} + \frac{1}{\zeta_{s_{3}}} + \frac{1}{\zeta_{s_{3}}}\left(\frac{1}{\eta_{b}}^{-1}\right)\left(\frac{1}{\zeta_{s_{3}}}\right)^{2} + \frac{1}{\zeta_{s_{3}}}\left(\frac{1}{\eta_{b}}^{-1}\right)\left(\frac{1}{\zeta_{s_{3}}}^{-1}\right)\left(\frac{1}{\zeta_{s$$

$$B = T_{03} \frac{C_{05}^2 B_{20}}{(2 + 4_{00} + (R_3/2_2)^2)^2}$$
(9)

The temperature ratios in Equations 8 and 9 are of order one as is the bucket axial velocity ratio. If these ratios together with the blade row efficiencies and exit flow angles are assumed to remain constant then Equation 7 can be differentiated, and thepeak efficiency point located.

$$4_{HL} = \sqrt{\frac{(7s/2_{1})^{4} A + 34_{01}^{2}}{4A + 3}}$$
(10)

$$\frac{1}{N_{p_{1}}} - 1 = \frac{A \left(2 + p_{12} + (R_3/R_2)^2\right)^2 + 3 \left(4 + p_{2} - 4 + p_{12}\right)^2}{4 + 3 \left(4 + p_{2} - 4 + p_{12}\right)^2}$$
(11)

Note that if the nozzle and bucket efficiencies equal unity in Equation (9), then A=0.0. Then there is no loss other than incidence and $\psi_{pk} = \psi_{pk}$ as expected.

By substituting Equations 10 and 11 into Equation 7, the following expression for "off-backbone" loss can be obtained.

$$\frac{\Psi}{\Psi_{\mathbf{pk}}} \left(\frac{1}{\eta} - \frac{1}{\eta_{\mathbf{pk}}} \right) = \Psi_{\mathbf{pk}} \left(4\mathbf{A} + \mathbf{B} \right) \left(\frac{\Psi}{\Psi_{\mathbf{pk}}} - 1 \right)^2$$
(12)

Equations 10, 11, and 12 give the location of the peak efficiency, the magnitude of the peak efficiency, and the variation in efficiency as we move away from the peak.

These equations represent the stage loss characteristic of a turbine. The design point information is used to obtain the initial values of A and B as well as the values of the blade row efficiencies and metal angles. The loss equations are then applied at incremental values of DHQT starting at zero to obtain the turbine efficiencies. Approximate relationships are used for temperature and velocity ratios to obtain new values of A and B for each DHQT.

Typically, the calculated values of the loss slopes and those obtained from air turbine test data are within about 5% for corrected speeds within plus or minus 20% of the design point value. The values of the "backbone efficiencies" generated by the above equations do not include either Reynold's Number effects or the severe rotor exit losses encountered near exit annulus choke. In order to account for these effects, the loss along the peak efficiency ridge was empirically modified using the results of the NASA air turbine tests. Although relatively good correlation existed between the different test turbines at low values of DHQT, the drop in efficiency in the neighborhood of exit annulus choke was so severe that correlation was difficult. For this reason, variations in efficiency on the order of 5% can be obtained in this region.

A comparison between measured and calculated values of the turbine totalto-total efficiency is shown in Figure 7. This figure is for test turbine number 25 in Table I. The maximum error shown on this figure is about 0.82. This type of plot was used in obtaining the error estimates given above.

Figure 7. Comparison of Measured and Calculated Values of Total-to-Total Efficiency.

7.4 Comparison of Radial Turbine Test Results and Program Output

A comparison was made between the program output and the "SOLAR" radial turbine described in Reference 20. The key design point parameters are summarized in Table IV. These values are used as the default settings for radial turbines as shown in the second example in Section 6.

The performance map is shown in Figure 8. The exit annulus choke curve forms the physical limit of the map. The portion of the map above this limit line represents a mathematical extension of the map which is necessary for cycle deck iteration purposes. The predicted swirl map is shown in Figure 9. The predicted equivalent weight flows are compared with the test data in Figure 10. The solid lines are the predicted values. In Figure 11 the total-to-static efficiency is compared with the so-called blade to jet speed ratio. This parameter is the ratio of the inlet wheel speed to the velocity calculated by expanding the flow isentropically through the inlet total to exit static pressure ratio. This is the usual manner of presenting radial-turbine efficiency data. The solid lines are the predicted values. The sharp breaks in the lines are due to interpolation. Values of DH/TA at intervals of 0.005 were used to read the map efficiencies and flows from Figure 8. The breaks are due to missing the peak efficiency at a given speed. A smaller interval could not be used due to size limitations on the program.

In general the comparison is quite good, and is probably within the accuracy that the data could be read from the relatively small curve given in Reference 20.

.

	SOLAR (REF.20) Rotor Dia. = 4.75"
NSTG	1
R3CR2	0.291
RECRT	0.200
R2	2.375-in
Tl	850°R
Pl	37.9 psia
Pl/PS3	2.53
Wl	0.433 pps
DHCTD	0.0493
ETATID	C.868
PSID	0.487
TFFD	0.3395
XNRTD	1718.0
XMZXD	0.22
ANGSWX	0.0
VZ 3C2(1)	0.33
ANG82	-1.8°

.

,

Figure 8. Radial Turbine Performance Map.

.

Figure 9. Radial Turbine Swirl Map.

ORIGINAL PACE 'S OF FOUR CUALITY

Figure 10. Radial Turbine Flow Comparison.

.

.

•

Figure 11. Radial Turbine Efficiency Comparison.

.

OR VALVAN A

LIST OF SYMBOLS

Α, ε	Constants
B, b	Constants
С	Velocity, fps
Ср	Constant Pressure Specific Heat, Btu/lbm [*] R
8 0	Dimensional Constant, 32.17 ft lbm/lbf sec ²
ħ	Enthalpy, Btu/1bm
i	Incidence Angle (i = $\beta_2 - \beta_{200}$), degrees
J	Mechanical Equivalent of Heat, 778.16 ft. 1bf/Btu
N	Speed, rpm
P	Pressure, psia
R	Radius. ft
Ry	Gas Constant, 53. 35 ft 1bf/1bm°R
S	Entropy, Btu/lbm [°] R
Ť	Absolute Temperature, R
Ū	Wheel Speed, fps
W	Belative Velocity, fps
a	Angle of Absolute Velocity With Axial, degrees
8	Angle of Belative Velocity Vector With Axial, degrees
ΔH	Drop in Total Enthalpy, Btu/1bm
T	Ratio of Specific Heats
λ	Enthalpy Loss Coefficient
ρ	Fluid Density, 1bm/ft ³
θ,	Ratio or Total Temperature to Standard Temperature
ψ	Turbine Stage Loading $[\psi = \Delta E / (2\dot{U}^2 / g_0 J)]$
¢	Flow Coefficient ($\phi = C_z/U$)
η	Efficiency

•

Subscripts

. . .

1	Nozzle Inlet
2	Botor Inlet
3	Rotor Exit
В	Bucket
d	Design Point Value
N	Nozzle
0	Stagnation
ор	Opt imum
pk	Peak
ÍT	Total-to-Total
S	Isentropic
2	Axial

REFERENCES

- 1. Fishbach, Laurence H., and Caddy, Michael J., "NNEP: The Navy-RASA Engine Program," NASA TM X-71857, 1975.
- Fishbach, Laurence H., "Konfig and Rekonfig Two Interactive Pre-Processing Programs to the NAVY/NASA Engine Program (NNEP," NASA TMX-82636, May 1981.
- Gauntner, James W, "Algorithm for Calculating Turbine Cooling Flow and the Resulting Decrease in Turbine Efficiency," NASA TM81453, Feb., 1980.
- 4. Flagg, E.E., "Analytical Procedure and Computer Program for Determining the Off-Design Performance of Axial-Flow Turbines," RASA CR-710, March 1966 (GE R67FPD294, August 1967).
- Whitney, Warren J., Szanca, Edward M., Bider, Bernard, and Monroe, Daniel E., "Cold-Air Investigation of a Turbine for High-Temperature Application. III - Overall Stage Performance," NASA TN D-4389, 1968.
- Whitney, Warren J., Schum, Harold, and Behning, Frank P., "Cold-Air Investigation of a Turbine for High-Temperature Application. IV -Two-Stage Turbine Performance."
- Schum, Harold J., Moffitt, Thomas P., and Behning, Frank P, "Effect of Variable Stator Area on Performance of a Single-Stage Turbine Suitable for Air Cooling. III - Turbine Performance With 130-Percent Design Stator Area," NASA TM X-1663, 1968.
- Schum, Harold J., Scanca, Edward M., and Prust, Herman W., Jr., "Effect of Variable Stator Area on Performance of a Single-Stage Turbine Suitable for Air Cooling. VI - Turbine Performance With 70-Percent Design Stator Area," RASA TM X-1697, 1968.
- 9. Flagg, E.E., "Analysis of Overall and Internal Performance of Variable Geometry One- and Two-Stage Axial-Flow Turbines," NASA CR-54449 (GE R66 FPD259), 1966.
- Converse, G.L., "Turbine Modeling Techniques to Generate Off-Design Performance Data for Both Single and Multistage Axial Flow Turbines," November Monthly Progress Report, General Electric, R79AEG598-2, November, 1979.
- Converse, G.L., "Turbine Modeling Techniques to Generate Off-Design Performance Data for Both Single and Multistage Axial Flow Turbines," December Monthly Progress Report, General Electric, R79AEG598-3, December, 1979.
- Converse, G.L., "Turbine Modeling Techniques to Generate Off-Design Performance Data for Both Single and Multistage Axial Flow Turbines," February Monthly Progress Report, General Electric, R79AEG598-5, February, 1980.

Small Axial Flow Turbine

- 13. Schlegel, J.C.; Liu, H.C.; Waterman, W.F., "Reduction of End-Wall Effects in a Small, Low-Aspect-Ratio Turbine by Radial Work Redistribution", Journal of Engineering for Power, Trans. ASME, Series A, January 1976.
- 14. Stewart, W.L., "A Study of Axial-Flow Turbine Efficiency Characteristics in Terms of Velocity Diagram Parameters, ASME Paper No. 610-WA-37, 1961.
- 15. Holeski, D.E.; Steward, W.L.; "Study of NASA and NACA Single-Stage Axial Flow Turbine Performance as Related to Reynolds Number and Geometry," Journal of Engineering for Power, Trans ASME, July 1964.
- 16. Wong, R.Y.; Nusbaum, W.J.; "Air-Performance Evaluation of a 4.0-Inch-Mean-Diameter Single-Stage Turbine at Various Inlet Pressures From 0.14 to 1.88 Atmosphere and Corresponding Reynolds Numbers from 2500 to 50,000", NASA TND-1315,1962.
- 17. Ohlsson, G.O.; "Low Aspect Ratio Turbines", Journal of Engineering for Power Trans. ASME, Series a, Vol. 86, 1964, pp. 13-17.

•

Radial Flow Turbines

- Lane, J.M., "Cooled Radial In-Flow Turbine for Low Specific Speeds and Low Velocity Factors", Paper presented at the Gas Turbine Conference and Products Show, ASME, March 9-12, 1981.
- 19. Rohlik, H.E.: Kofshey, M.G.: "Recent Radial Turbine Research at the NASA Lewis Research Center", ASME 72-GT-42, 1972.
- 20. Rogers, Colin, "Efficiency and Performance Characteristics of Radial Turbines", SAE Paper 660754, 1966.
- 21. Futral, Samuel M.; Wasserbauer, Charles A.; "Off-Design Performance Prediction with Experimental Verification For a Radial-Inflow Turbine: NASA TND-2621, 1965.
- 22. Rizika, J.W., et.al., "The Design and Performance Analysis of Radial in Flow Turbines", in 2 volumes, NREC Report No. 1067-1, 1067-2, Northern Research and Engineering Corporation, Cambridge, Massachusetts, 1964.

REFERENCES - (CONTINUED)

- 23. Wood, Homer J.: "Current Technology of Radial-Inflow Turbines for Compressible Fluids", Journal of Engineering for Power, Trans. ASME, Series A, Vol. 85, 1963.
- 24. Knoernschild, E.M.: "The Radial Turbine for Low Specific Speeds and Low Velocity Factors", Journal of Engineering for Power, Trans. ASME, Series A, Vol. 83, 1961.

DISTRIBUTION LIST - FINAL REPORTS - NAS3-23055

Attn:		Mail Stop	No. of	Copies
Report Contr	ol Office	60-1	J	
Library		60-3	3	
M. J. Hartma	nn	3-7	1	
L. W. Schope	n	500-305	۱	
H. Mark		501-12	I	
D. N. Bowdite	ch	86-1	I	
D. L. Nored		301-2	J	
L. D. Nichols	5	60-2	1	
C. L. Ball		60- 5	2	
L. E. Macioce	2	6-8	1	
H. E. Rohlik		6-10	2	
L. H. Fishbac	h	501-10	25	
ASA Scientific and T	echnical Information	n Facility	25	

53

.

DISTRIBUTION LIST (CONT'D)

One copy each to the following. Mr. E. G. Blevins AFWAL/POTA Wright-Patterson AFB, OH 45433 Ms. Bobbye Ross AiResearch Manufacturing Company of Arizona P.O. Box 5217 Phoenix, AZ 85010 Mr. Len Levine AVCO-Lycoming Division 550 South Main Street Stratford, CT 06497 Mr. Dushyant R. Arab Senior Engineer Propulsion - R&D Beech Aircraft Corporation Wichita, KS 67201 Mr. Erol Onat The Boeing Company P.O. Box 3999 Seattle, WA 98124 Mr. Paul W. Reisdorf Technical Center Caterpillar Tractor Co. 100 N. E. Adams Street Peoria, IL 61629 Mr. Gerald W. White Senior Propulsion Systems Analyst Office of Scientific and Weapons Research Central Intelligence Agency Washington, DC 20505 Mr. Richard A. Sulkoske Supervisor - Preliminary Design Detroit Diesel Allison P.O. Box 894 Indianapolis, IN 46206

Mr. Heiner O. Becker Project Manager Engineering Systems Dresser Industries, Inc. Dresser Computer Services Division P.O. Box 796369 Dallas, TX 75379 Mr. M. A. Romano Advanced Products Fairchild Republic Company Farmingdale LI, NY 11735 Mr. Lynn Marksberry Fluidvne 5900 Olson Memorial Highway Minneapolis, MN 55422 F1D/SDNP Attn: M. A. Pennucci Wright-Patterson AFB, OH 45433 Ms. Joyce R. Stinson, Manager Systems Computations Building 24065 General Electric Co. 1000 Western Avenue Lynn, MA 01910 Mr. Ronald E. Feddersen Mail Stop C42-05 Grumman Aerospace Corporation Bethpage, NY 11714 Mr. Ivan C. Delrich IDA/S1D 1801 N. Beauregard Street Alexandria, VA 22311 Mr. J. F. Stroud Lockheed-California Company Burbank, CA 91520 Mr. John C. Donohoe Martin Marietta Aerospace Mail Point 306 Orlando Division P.O. Office Box 5837 Orlando, FL 32855

2

Eugene E. Covert, Sc.D. Professor and Director Department of Aeronautics and Astronautics Center for Aerodynamic Studies Massachusetts Institute of Technology Cambridge, MA 02139

Dr. Robert T. Taussig Director of Energy Technology Mathematical Sciences North West, Inc. 2755 Northup Way Bellevue, WA 98004

Mr. Donald C. Bingaman McDonnell Douglas Corporation 271/C9A P.O. Box 516 St. Louis, MO 63166

NASA Ames Research Center 237-11/Tom Galloway Moffett Field, CA 94035

National Aeronautics and Space Administration George C. Marshall Space Flight Center Attn: PD31-78-41 Marshall Space Flight Center, AL 35812

NASA Langley Research Center 249/Shelby J. Morris Hampton, VA 23665

Mr. Michael Caddy Code 6052 Naval Air Development Center Warminster, PA 18974

Mr. Paul Piscopo Naval Air Propulsion Center P.O. Box 7176 Trenton, NJ 08628

F. J. O'Brimski, Commander Naval Air Systems Command AIR-5284C2/JEL Department of the Navy Washington, DC 20361

Professor Thomas Houlihan Code 69 HM Naval Post Graduate School Monterey, CA 93940

Mr. Andre By Northern Research and Engineering Company 39 Olympia Avenue Woburn, MA 01801 Mr. Arif Dhanidina, 3813/82 **Propulsion Research** Northrop Aircraft Division One Northrop Avenue Hawthorn, CA 90250 Mr. Douglas Lee, 3828/52 Advanced Propulsion/Thermal Analysis Northrop Aircraft Division One Northrop Avenue Hawthorn, CA 90250 Mr. Henry Snyder Pratt & Whitney Aircraft Group Engineering Computer Applications Government Products Division, M/S 712-28 P.O. Box 2691 West Palm Beach, FL 33402 Mr. Robert Howlett Pratt & Whitney Aircraft Division 400 Main Street Mail Stop EBiF1 East Hartford, CT 06108 Mr. Larry Carroll Propulsion Dynamics Inc. 2200 Somerville Road Annapolis, MD 21401 Mr. William E. Flaus-D/71 B/6 North American Aircraft Division Rockwell International 4300 East Fifth Avenue P.O. Box 1259 Columbus, OH 43216 Mr. Larry Miller Aerospace Marketing Manager Rosemount Incorporated P.O. Box 959 Burnsville, MN 55337 Mr. Nate Anderson Mail Zone E-9 Solar Turbines International P.O. Box 80966 55 San Diego, CA 92138

Professor I-Dee Chang Department of Aeronautics and Astronautics William F. Durand Building Stanford University Stanford, CA 94305 Mr. Mark A. Chappell Sverdrup Technology Inc. Mail Stop 500 Arnold Air Force Station, TN 37389 Mr. John J. Fox Teledyne CAE 1330 Laskey Road P.O. Box 6971 Toledo, OH 43612 Commander US Army Aviation Research & Development Command Attn: DRDAV DP/Dennis Enders 4300 Goodfellow Blvd. St. Louis, MO 63120 Mr. Mike Galvis - DAVDL-ATL-ATP Applied Technology Laboratory U.S. Army Research Laboratory (AAVRADOM) Fort Eustis, VA 23604 Dr. Paul C. Glance Chief, Engine Function Department of The Army U.S. Army Tank-Automotive Research and Development Command Warren, MI 48090 Dr. Walter Obrien Mechanical Engineering Dept. Virginia Polytechnic Institute Blacksburg, VA 24061 Dr. Reginald G. Mitchiner Associate Professor of Mechanical Engineering Virginia Polytechnic Institute and State Univ. Blacksburg, VA 24061 Mr. W. M. Rhoades Manager, Propulsion and Thermodynamics Vought Corporation P.O. Box 225907 Dallas, TX 75265 56

Mr. Gerald J. Herman Williams Research Corporation 2280 West Maple Road Walled Lake, MI 48088