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Abstract

Precision space structures may require active vibration control to satisfy critical

performance requirements relating to line-of-sight pointing accuracy and the maintenance of

precise, internal alignments. In order for vibration control concepts to become operational, it is

necessary that their benefits be practically demonstrated in large scale ground-based experiments.

A unique opportunity to carry out such demonstrations on a wide variety of experimental testbeds

was provided by the NASA Control-Structure Integration (CSI) Guest Investigator (GI)

Program. This report surveys the experimental results achieved by the Harris Corporation GI

team on both Phases I and II of the program and provides a detailed description of Phase II

activities. The Phase I results illustrated the effectiveness of active vibration control for space

structures and demonstrated a systematic methodology for control design, implementation and

test. In Phase II, this methodology was significantly streamlined to yield an on-site, single session

design/test capability. Moreover, the Phase II research on adaptive neural control techniques

made significant progress toward fully automated, self-reliant space structure control systems. As

a further thrust toward productized, self-contained vibration control systems, the Harris Phase II

activity concluded with experimental demonstration of new vibration isolation hardware suitable

for a wide range of space-flight and ground-based commercial applications. The CSI GI Program

Phase I activity was conducted under contract NAS 1-18872, and the Phase II activity was
conducted under NAS 1-19372.
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1. INTRODUCTION\OVERVIEW

A notable element of overall progress in the field of active vibration control for flexible

space systems has been the emergence of "Guest Investigator" efforts which provide several

investigative groups the opportunity to conduct multidisciplinary research on traceable testbeds

that would otherwise be beyond the technical and financial means of individual researchers. The

longest standing and, in our opinion, the most effective and productive effort of this kind is the

NASA Controls-Structures Integration (CSI) Guest Investigator (GI) Program. In its first phase

eight research groups, including Harris Corporation, were contracted to work on two NASA

facilities (the Mini-MAST facility at NASA Langley Research Center (NASA/LaRC) and the

ACES facility at NASA Marshall Space Flight Center (NASA/MSFC)) to research a variety of

topics including modelling, system identification, line-of-sight pointing, vibration suppression, and

fault detection (see Reference [1]). More recently, over the past two years, phase IX of the CSI

GI program engaged five investigative groups (again including Harris) for continued efforts in

system modelling and control design on an additional suite of test facilities (the ASTREX facility

of the Air Force Phillips Lab, the CASES facility at NASA/MSFC and the CEM facility at

NASA/LaRC). This Final Report reviews the entire Harris activity and results on both phases of

the program with particular emphasis on Phase IIo

Besides the implementation and exploitation of advanced test facilities and the acquisition

of real experimental results that illustrate the power of advanced vibration control technology, the

research findings of the CSI GI program have significantly advanced the field toward one of

professional competence backed by effective, reliable tools. In particular, thanks to the

multiplicity of testbeds offered, Harris' structural control technology has been significantly

advanced. Figure l- 1 illustrates the major thrusts of the Harris effort and Table 1-1 lists the

principal accomplishments. Important progress was achieved not only in control algorithm design

but in many other areas involved in practical implementation, including: (1) overall

implementation and test methodology, (2) global control system architecture (actuation,

information patterns, etc.) which have the greatest leverage on final achievable performance and

(3) basic control strategies and new controls hardware approaches. Moreover, we have gained an

understanding of how to orchestrate the above elements to achieve the reliable, high

performance yet rapid and inexpensive design/implementation/test capability that is needed to

make the active structural control field economically viable.

The story of the progress mentioned above spans both phases I and II of the program.

Therefore, although our primary responsibility is to report results for Phase II, this report

summarizes progress over the entire program.

1-1
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Phase I

Year 1

OPUS EXPERIMENTAL VALIDATION

• outstanding results on 4 testbeds

• efficient design techniques

• pioneering application of ERA & OPUS

/

Phase II

STREAMLINED DESIGN/TEST METHODOLOGY

• building block design/test methodology

• streamlined/indentification and design tools

• single-session on-site design test process

AUTOMATED, PRODUCTIZED VIBRATION

SUPPRESSION HARDWARE

r

• demo of adaptive control

• experimental test of modular vibration

isoloation hardware



Table 1-1 Harris CSI GI Program Accomplishments

• Experimentally demonstrated OPUS control design technology on four independently referred
testbeds.

- Control system performance uniformally outstanding and consistently matched predictions.

• Identified and demonstrated the robustifying features of OPUS design -- i.e. established the

phenomenology of how OPUS achieves robust design in the face of various types of parameter
uncertainty.

On Mini-MAST: Performed detailed assessment of cost and complexity versus performance

tradeoffs by testing a sequence of distinct designs ranging from simple rate feedback to advanced

centralized OPUS. This data helps characterize the utility of modem design methods versus
classical methods.

On ACES: Pioneered the application of ERA tools (developed at NASAXLaRC) for extracting

system models directly from test data---this is a key component to a streamlined implementation
methodology.

On ACES and Mini-MAST: Evolved the "Gradualist" design/test methodology--a systematic

methodology for using ERA and OPUS tools to achieve fast, economical control design and test.
This methodology further streamlined in Phase II.

• Phase II: Compressed and speeded up the Gradualist methodology into a single session on-site

control design and test process--executed this process on CASES and CEM testbeds.

• Phase II: Using adaptive neural control technology, took major steps toward the complete

automation of the structural control design/test process. Previous Harris work established a new

neural architecture for system ID and adaptive control. Our collaboration with NASA/LaRC

facilitated a demonstration of Adaptive Neural Control on the CEM testbed.

• On CEM Phase II: Provided hardware demonstration of the Vibration Attenuation Module

(VAM) a new approach to active isolation of spacebourne sensors from spacecraft generated

disturbances. VAMs actively cancel vibration transmission without reducin_ passive stiffness.

1-3

i"

• • •, _• .... : .... :. •_. i • • ••

i!i •> _ ii!i_i!i_i_i_i!_:_ i _: ii i_i_i,_





2. PHASE I ACTIVITIES AND PROGRESS

2.1 Control Design Background

As illustrated in Figure 2. l- 1, Harris has comprehensive experience and expertise in CSI

technology, ranging from basic control theory to actual experimental verification, giving Harris a

unique ability to integrate control technologies and apply them to structural systems°

The contributions of the Controls Technology Group at Harris to basic control theory

have been diverse and have had a major impact on progress in controls research. Our overall
!

OPUS (Optimal Projection for Uncertain Systems) approach [2] contains several key ingredients.

Maximum entropy robustness design [3-5] was developed to allow robust control synthesis for

flexible structures and has been shown in several studies and experiments to allow the

development of practical robust controllers. The optimal projection characterization of optimal

reduced-order controllers and models [6-10] was pioneered by Harris researchers and has led to

the development of novel numerical algorithms and rigorous comparisons between optimal

reduced-order controllers and reduced-order controllers obtained by sub optimal methods [ 1 1,

12]. Majorant analysis [13-16] has made major strides in the development of various types of

robust performance bounds. The development of H2/Hoo synthesis [ 17, 18] was a major result

that allows control design for the simultaneous rejection of both broadband and narrowband

disturbances. Recent results on Popov analysis [ 19-21] enable robustness analysis for parametric

uncertainty that is much less conservative than small-gain type tests such as H_ or complex

structured singular value analysis. The combination of these elements gives a capability which

accommodates numerous real-world constraints to design simple, reliable controllers.

To compliment the basic theory discussed above Harris has developed reliable numerical

algorithms based on homotopy approaches [22, 23]. These algorithms have global convergence
i

properties and have been shown to be effective in the design of robust and reduced-order

controllers. The implementation of these algorithms in a MATLAB environment has led to an

efficient design environment for the control engineer.

The main thrust of the Phase I effort was to experimentally validate OPUS on

independently refereed testbeds. The design work relied particularly on the maximum entropy and

optimal projection components of OPUS. In addition, alternative design theories were also

investigated (by appropriately specializing OPUS) in an effort to study the cost and complexity

tradeoffs of various approaches. Phase I activities were directed at OPUS design and test on two

experimental facilities: The ACES facility at NASA/MSFC and the Mini-MAST facility at

NASA/LaRC. These efforts and corresponding results are described in the next two sections.

2-1



Figure 2.1-1 Harris' Expertise in CSI Technology Ranges from Control Theory to
Experimental Validation
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2.2 ACES Experiments: Facility Description and Control Design Test Results

The Advanced Control Evaluation for Systems (ACES) facility (see [24]) was addressed

by the Harris team in the first year of Phase I of the GI program. Full details of this Phase I

activity are given in [25, 26].

The ACES experimental testbed [24] is located at NASA Marshall Space Flight Center

(MSFC). The basic test article, a spare Voyager Astromast, is a deployable, lightweight (about 5

pounds), lightly damped beam, which is approximately 45 feet in length. The ACES

configuration, shown in Figure 2.2-1 consists of an antenna and counterweight legs appended to

the Astromast tip and the pointing gimbal arms at the Astromast base° Overall, the structure is

very flexible and lightly damped. It contains many closely spaced, low frequency modes (more

than 40 modes under 10 Hz). As illustrated by Figure 2.2-2 the ACES configuration is

dynamically traceable to future space systems and is particularly responsive to the study of line-of-

sight issues.

The goal of the control design is to position the laser beam in the center of the detector.

The detector and pointing gimbals are each positioned on the end of a flexible appendage to

increase the difficulty of the control problem. The lack of information about the appendage

motion also adds complexity to the controller design (i.e., there is no accelerometer or gyro at the

location of the gimbals or the detector).

The actuators and sensors available for controller implementation are listed in Figure

2.2-1. In our control design and implementation we used 8 control inputs and 8 measurement

outputs. The inputs were the X and Y torques of the Image Motion Compensation (IMC)

gimbals, the X and Y torques of the Advanced Gimbal System (AGS) and the X and Y forces of

the two Linear Momentum Exchange Device (LMED) packages. The measurements consisted of

the X and Y detector (DET) position outputs, the X and Y base gyro (BGYRO) rate outputs and

the X and Y outputs of the LMED accelerometers. The disturbances were chosen to be position

commands to the Base Excitation Table (BET). The BET motion is regulated by an analog

controller which allows any type of BET movement within the frequency limitation of the

hydraulic system.

Perhaps the most severe challenge on the ACES testbed was to secure a system model of

adequate fidelity to support control design. In this experiment, a finite element model (FEM) was

initially supplied by MSFC. Figure 2.2-3 shows a typical comparison between one of the FEM-

generated frequency responses (top of the figure) and the corresponding frequency response

function (FRF) generated from open-loop test data. Clearly the FEM had very serious

discrepancies and could not be used reliably for control design.

At this point the traditional approach would have been to refine the finite element model

to more closely match open-loop test data. However, this is a laborious, generally iterative and

time consuming process. Since control design and test results were required within less than a

2-3



1. Base Excitation Table
2. 3 Axis Base Accelerometers

3. 3 Axis Gimbal System

4. 3 Axis Base Rate Gyros and Counterweight
5. 3 Axis Tip Accelerometers
6. 3 Axis Tip Rate Gyros
7. Optical Detector
8. Mirrors
9. Laser

10. 2 Axis Pointing Gimbal System
11. LMED System

®

®

Light Path

3 Meter Antenna

©

Single Structure Control

Laboratory

i !

- ._2_
1 1

t I

"_L j®
A\

/1\

A

xj/
A

i -4.-
./1\
M/
/3\

II

©

Astromast

©

Figure 2.2-1 The ACES Experiment
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yearwith lessthanone man-yearof effort, we electedto develop statespacemodelsdirectly from
open-looptestdatausing theEigensystemRealizationAlgorithm (ERA) developedby Juangand
Pappaat NASA/LaRC [27, 28]. ERA permittedtherapid developmentof excellent system
modelswith which to supportcontrol designin a timely manner. Figure 2.2-3 illustratesthe very
good agreementobtainedbetweenthe ERA model and open-loopexperimentaldata.

Our ERA-generatedmodel was the first up-to-dateand accuratemodel producedfor the
ACES testbedandwe immediately provided this modeldatato the CSI ProgramOffice for useby
laterGI's. Our useof ERA wasalsothe first of severalexcellenttechnology transfersthat
enabledrapid progresson theprogram.

Inspectionof both ERA andtest-generatedFRFsrevealedinsights that further streamlined

the designprocess. The FRFs of the IMC-Y to DET-X andIMC-X to DET-Y loopsrevealed
that thoseloops areinfluenced very little by theflexible modesof the structure. It follows that the

IMC gimbalsarenot capableof controlling flexible modesto improve LOS performance. Thus, if
oneconsidersthefour actuator inputs (IMC-X, IMC-Y, AGS-X andAGS-Y) and thefour sensor
outputs (DET-X, DET-Y, BGYRO-X, BGYRO-Y), it is not necessaryto feed back the BGYRO
outputs to theIMC gimbals sincethe BGYROs primarily contain information about thebehavior

of the flexible modeswhich the IMC's cannotcontrol. In addition, theDET outputsdo not
containmuch (if any)useful information for theAGS gimbalsthat is not alreadyprovided by the
BGYRO's. Thus, theachievableperformancecannotbe improvedby feeding back theDET

outputsto the IMC gimbals or theBGYRO outputs to theAGS gimbals. As illustrated by Figure
2.2-4, analysisof testdataalsorevealedthat within the decentralizedstructuredescribedabove

therewere four dominant loops: AGS-X to BGYRO-X, AGS-Y to BGYRO-Y, IMC-X TO
DET-Y, and IMC-Y TO DET-X.

This decentralizedstructureof theproblem allowed usto takea building block approach,
addressingeachcontrol subsystem(comprising separategroupsof actuatorand sensorhardware

elements)oneat a time, progressivelyintegratingthe subsystemsand acquiring moreandmore
modelling information to supportfurther design. This building block approachwas thegenesisof
themore formalized gradualistmethodologyto bedescribedfurther below. Specifically, our
overall procedurecomprisedan initial open-looptest session,to collect thedataneededfor ERA
modelling, followed by a sequenceof threeclosed-looptestsessions.Using theinitial ERA
models from the open-loopsession,OPUSwasusedto designacontroller for the IMC/DET
subsystem,andthis controller was testedin the first closed-loopsession. Data from this first

closed-looptest sessionwas thenusedto obtain refined ERA modelsfor thehigher frequency

2-7
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modal dynamics associated with the Astromast in order to support the OPUS design of the

AGS/BGYRO control subsystem. The combined IMC and AGS controllers were then tested in

the second closed-loop session, during which refined modelling data on the LMEDs was also

obtained. After designing the LMED controllers, the integrated controller comprising all three

subsystems was tested in the final closed-loop session. Table 2.2-1 summaries the performance

results for each of the test sessions. In each session, test results were in close agreement with

predictions, and as the right column of Table 2.2-1 illustrates, performance systematically

improved as additional control subsystems were integrated. The outstanding performance

achieved (an order of magnitude reduction in LOS jitter and three orders of magnitude in bias

error) by the fully integrated controller is illustrated in Figure 2.2-5 which shows open versus

closed-loop response of the x-axis of the detector to an impulsive BET disturbance.

The results of this experiment illustrate that "simple" controllers, i.e. reduced-order and

decentralized controllers, can provide very significant performance improvement. The total

design model contained 45 states. However, the integrated controller contained only 28 states

and had a decentralized architecture. This reduction in controller complexity is very important for

the development of practical controllers due to the substantial limits on throughput capability of

space-qualified processors.

In the process of obtaining the above performance results, we also obtained much insight

into the practical features of Maximum Entropy (ME) design that are responsible for its

robustness capabilities. These features are illustrated, for the case of the AGS/BGYRO

controllers, in Figure 2.2-6 through 2.2-8.

Figure 2.2-6 describes the influence of ME uncertainty design on the phase of a full-order

compensator in the performance region (i.e., less than 3 Hz). The phase of the LQG compensator

varies widely over this frequency interval, implying that the Nyquist plot of the corresponding

loop transfer function encircles the origin several times. As one would expect, these designs were

nonrobust and were unstable when implemented. However, the ME designs became positive real

in the performance region tending toward rate feedback. Thus the ME designs provided the

needed stability robustness in the performance region.

Figure 2.2-7 describes the influence of ME uncertainty design on the magnitude shape of a

full-order compensator in the performance region. Notice that the ME compensator magnitudes

are smoother than those of the LQG compensators, thus providing performance robustness.

Another implication is that the ME designs yield robust controllers that are effectively reduced

order controllers. In practice, the full-order ME design actually provides insight into the choice of

the order of the compensator and is a numerical aid in synthesizing reduced order controllers.
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0.2 OPEN LOOP RESPONSE TO BET-X PULSE
i i i
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Figure 2.2-5 The Integrated Controller Provided Greater Improvement in the DET-X

Response to a BET-X Pulse than any of the Three Individual Controllers

2-11



i i

! 0

i oS

XINIV$H_DNfl HDIM " " "
XSNIYIH_DNfl 14iliOn4

XINIYIH_DNfl &flO/M

I - I I I I

NOIO_'d _D_O_d _ NI _SVHd }IOJ.VgNH_AIOD

00_-

001-

o

00_

00_

E_
_E

,._ t_

._

.__

eq

0'4

,-.4

I
Cq



/_ 2:

• /

if:<

I

_n

,-,, k,m°

O_O

"I O

=

o_9_

_n

_<.._

= =

O

10 3

0

0

_ 10 2

<

COMPENSATOR MAGNITUDE IN THE PERFORMANCE REGION

I i I i I

. /q

. ,w

..f...° ......

W/OUT UNCERTAINTY

MEDIUM UNCERTAINTY

• . . HIGH UNCERTAINTY

101 , , , , ,

0 1 2 3 4 5

FREQ IN HZ

6



The higher authority controllers notched the high frequency modes that had high gain. As

illustrated by Figure 2.2-8, ME design was able to robustify the controller notches. That is, the

controller notches were increased in both width and depth.

The above features of the Maximum Entropy robustness design method proved to be

crucial in developing stable controllers which yielded significant performance improvement when

implemented.

2.3 Mini-MAST Experiments: Facility Description and Control Results

For the second year of Phase I of the CSI GI Program, the Harris team was assigned to

the Mini-MAST facility at NASA/LaRC (see [29])° Details on the Harris GI effort on the Mini-

MAST facility are given in [30, 31].

The basic Mini-MAST test article is a generic space truss designed and manufactured by

Astro Aerospace Corporation. The tubing members of the truss are made of graphite/epoxy. The

truss beam is deployable and retractable and has a triangular cross section. The total height of the

truss is 20.16 meters and the truss consists of 18 bays, each of which is 1.12 meters in height.

The actuators and sensors available for control design implementation, disturbance

generation, and performance evaluation are shown in Figure 2.3-1. The only actuators available

for control are three torque wheel actuators that are mounted on the tip plate (top of Bay 18)

parallel to the global x, y and z reference axes. The torque wheels provide both torsional and

bending torque loads to the Mini-MAST.

The available control sensors are six Sundstrad QA-1400 servo accelerometers and three

Watson angular rate gyros. Four accelerometers are located at the beam tip (Bay 18) and two are

located on the mid platform (Bay 10). These sensors measure linear acceleration in the global x

and y directions. The three rate sensors are located at the beam tip (Bay 18) and measure pitch

(about the x-axis), roll (about the y-axis), and yaw (about the z-axis).

Fifty-one Kaman KD-2300 proximity probes (i.e, displacement sensors) are installed on

the support structure along the Mini-MAST. These devices can be used for control but were

primarily intended for structural dynamic testing and performance evaluation. In our

experimentation, we used the three Kaman sensors at Bay 18 for performance evaluation.

Three Unholtz-Diclde 50-lb. shakers are attached at Bay 9 for disturbance generation.

These shakers are oriented normal to the faces of the truss at each of the three vertices.

As illustrated in Figure 2.3-2, the Mini-MAST structure can be viewed as the secondary

support tower of a precision reflector structure. To achieve high accuracy line-of-sight pointing

in the structure of Figure 2.3-2 it is important to minimize the relative displacement of the tip

of the beam with respect to the base. Hence, the primary objective of this experiment was to

design controllers that provide substantial reduction of the displacement of the tip of the

2-14
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Mini-MAST structure. Particular emphasis was also placed on controller simplicity (i.e., reduced-

order and decentralized controller architectures). Complexity reduction in control law

implementation is of paramount interest due to stringent limitations on throughput of even state-

of-the-art space qualified processors.

To maximize traceability to real flight systems, only the (acceleration and rate) sensors

that are mounted on the Mini-MAST structure were used. Five sensors were used: four

accelerometers and one rate gyro. Because of the two differentiators in the transfer functions

from the control actuators to the accelerometers, the high frequency modes were much more

observable in the accelerometers than in the displacement sensors. Because the performance

objective required control of the low frequency modes without destablizing the higher frequency

modes (a standard structural control problem), the use of accelerometers for control design

significantly increased the spillover problem. Thus, in this case, it was much more challenging to

achieve high performance design using accelerometers rather than displacement sensors.

Because of the use of accelerometers, it was veryimportant to ensure that the control laws

rolled off sufficiently to avoid destabilizing the high frequency modes. In this experiment the roll-

off was enforced by using a precompensation strategy. That is, practical roll-off filters (Cu(s) and

Cy(s)) were first designed and included as part of the plant as shown in Figure 2.3-3. Reduced-

order LQG and Maximum Entropy control laws were designed using the modified plant. Then, as

illustrated in Figure 2.3-4, the roll-off filters were appended to the reduced-order LQG and

Maximum Entropy control laws to obtain the control laws which were actually implemented. As

will be seen in the subsequent results, this methodology proved to be very effective for achieving

the control design objectives for the Mini-MAST.

Two models of the Mini-MAST were provided by NASA Langley Research Center. The

first model, Model 1, was used to generate the reduced order models that were used to design the

decentralized controllers and had good correspondence to experimental data below 10 Hz. A

second model, Model 2, that had even better correspondence to experimental data under 10 Hz

was provided later in the program. This close correspondence is illustrated by Figure 2.3-5.

Model 2 was used to generate the reduced order model that was used to design the centralized

controllers. The final evaluation model for each of the control designs was the full-order

representation of Model 2, discretized at 80 Hz, the sample frequency chosen for control law

implementation.

At the very outset of the control design activity, we determined a very simple and effective

way to suppress the torsional mode response, thereby saving our design resources for control of

the bending motion. As Figure 2.3-6 shows, the transfer function from Torque-Z to Rate Gyro-Z

was dominated by the first torsional mode at 4.4 Hz. Hence, it appeared feasible to use simple

decentralized constant gain feedback from Rate Gyro-Z to Torque-Z to achieve high attenuation

2-18
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of the torsional mode. A full-order discrete-time model of the system was developed using Model

1 to represent the system at the 80 Hz sampling frequency. This model was employed to

determine that the optimal constant gain is K=10. All of the implemented controllers were

designed assuming that this feedback loop was closed. These designs added feedback loops that

used only the accelerometers and the X and Y torques. The use of the Rate Gyro-Z to Torque-Z

feedback essentially eliminated the influence of the torsional mode on the remaining loops as

illustrated by the dotted line in Figure 2.3-7° The resultant performance improvement in the

torsional motion is shown in Figure 2.3-8.

Being in possession of high fidelity models and having disposed of the torsional mode, we

then concentrated on the bending motion response and used our resources to explore design

complexity versus performance tradeoffs. This was done by testing a sequence of distinct designs,

ranging from simple "rate feedback" to advanced centralized OPUS design. First, controllers with

simple architectures (decentralized, reduced-order, using few sensors) were developed and tested.

Subsequently, centralized control laws were developed in order to improve the performance. The

centralized design with the best performance did significantly improve the performance of the

"best" decentralized design. This sequence of designs also represents a step-by-step, progressive

improvement approach similar to that employed in the ACES testbed.

In all, seven distinct bending motion controllers were designed and tested over two test

sessions. Figure 2.3-9 shows tip displacement response to a shaker impulse disturbance for the

open-loop and for the four decentralized designs. Figure 2.3-10 shows tip responses for open-

loop, the best decentralized design (controller 4) and the three centralized designs. These designs

are numbered in the chronological order of their testing. All designs worked stably on the first try

and each design in the sequence shows progressive improvement over its predecessor. Moreover,

experimental results were in close agreement with analytical predictions so we show only the

experimental data here.

With these results we can observe the relative performance benefits of the more complex

modem multivariable designs over the simpler decentralized (SISO) designs. Try as we might, the

simpler SISO designs could not be made to damp the tip deflection in less than several cycles of

the primary pair of bending modes. This is evident from the bottom plot of Figure 2.3-9 for

controller 4. Suppression of bending motion within one cycle was only possible with the

centralized OPUS design as shown at the bottom in Figure 2.3-10. To our knowledge,

comparable results were obtained only by the Cal. Tech. GI team using Ix-synthesis--another

modem multivariable method. In summary, Figure 2.3-11 shows a comparison of tip

displacement response for the open-loop and for the advanced OPUS design under identical

impulse disturbance. While the open-loop vibration persists for a dozen periods of primary

bending motion, the closed-loop system is damped within approximately one cycle.
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2.4 Phase I: Summary of Principal Findings

Phase I activities were invaluable in helping transition the Harris structural controls

technology into practice. There were many areas of significant progress and several particular

conclusions concerning more effective methodology that arose from the Phase I GI experiences.

These are discussed under separate headings below.

Validation of OPUS Design and Investigation of OPUS Robustness Phenomenology

One accomplishment of the Phase I program was the experimental verification of the

OPUS design technology, particularly the Maximum Entropy design feature° Experiences on both

Phase I and Phase II, involving four independently refereed testbeds in all, have shown OPUS to

be a reliable, effective tool for robust design. In all experiments, including those in Phase II,

OPUS controllers displayed stable operation with performance close to predicted values from the

very first try. Performance actually demonstrated on all testbeds was outstanding. In addition,

practical implementation experience has built our understanding of the particular features of

Maximum Entropy design that enable it to achieve robust performance e.g., the smoothing of

compensator gain and phase, the widening of narrowband compensators, the widening and

deepening of controller notches, etc. This improves our efficiency in the subsequent application

of the design tools.

Importance of Automated System ID

One of the most important overall lessons learned on Phase I was that it is fundamentally

the control designer's responsibility to secure system models with sufficient fidelity to support

high performance control system design. Moreover, the ERA and its variants proved to be

efficient, accurate and low cost tools for the acquisition of system models directly from test data.

Our use of ERA on the program fits in with the space structure control scenario in which the

system is initially (pre-launch) equipped with a simple, highly robust controller which is then

refined on-orbit using in-mission identification testing. The use of ERA and similar automated

identification tools marks significant progress toward an efficient low cost control

design/verification methodology for precision space structures.

Utility of Low Order Models and "Simple" Controllers

The results of both the ACES and Mini-MAST experiments illustrated that simple

controllers (reduced order and decentralized) based on reduced order models can provide very

significant performance improvement. This reduction in controller complexity reduces the

throughput requirements on space-qualified processors and reduces time and cost needed for

design and implementation. From the GI experiences and similar exercises, we believe that a
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practical control design and implementation approach has to start with "simple" controllers and

then increase controller complexity as needed to attain performance goals.

Evaluation of a Fast, Low Cost Design and Test Methodology

As depicted in Figure 2.4-1, one of the most beneficial outcomes of the Phase I effort was

our integration of OPUS and ERA tools into a practical, fast, and economical control design and

test methodology. This "Gradualist" design and test methodology is a step-by-step building up

process with alternating model-data acquisition and control design refinement steps. This is a

design development process that leads rapidly to the final, advanced design while revealing the

significant complexity versus performances tradeoffs.

The power of a multivariable design tool (such as OPUS) can sometimes beguile its users

to expect a practically implementable and satisfactorily working control algorithm after a one-step

application of the design software to system dynamic models and performance specifications.

Such a "big-bang" approach seldom works in practice because of unforeseen complexities and

modelling errors that attend real hardware. Thus, development of advanced design tools is not

enough for successful implementation of working control systems. What is needed, in addition, is

a practical methodology for using advanced design tools that meshes algorithm design, system

modelling, and subsystem and component tests into a realistic strategy for implementation. The

OPUS application methodology we have evolved is gradualist in that it progresses step-by-step

from simpler control architectures (e.g., low-order, decentralized) to the more complex

coordinated control algorithm, and from a small set of subsystem hardware elements (i.e., sensors

and actuators) toward integration of all hardware elements. A key element of this methodology is

its emphasis on dynamic models extracted directly from test data. We rely primarily on the

Eigensystem Realization Algorithm developed by Juang and Pappa at NASA/LaRC and have

acquired experience with its most recent refinements. While exploiting the capabilities of both the

OPUS multivariable control design methods and the ERA system ID methods, the Gradualist

methodology allows flexible response to unforeseen contingencies and to new modelling data,

thereby recapturing some of the flexibility inherent in classical design procedures.

The Gradualist methodology is depicted in Figure 2.4-2. Two layers of gradualism are

evident. The first of these involves hardware subsystems which are first treated separately (as in

the ACES experiments) before being integrated as a single monolithic system. In addition to the

reduced complexity of initially separate treatment, this stepwise methodology allows assessment

of the real contributions made by each subsystem to overall performance improvement. Perhaps

even more important to the success of the methodology is the second layer of gradualism, which

determines how the control system for a given set of hardware is developed and demonstrated.
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Gradualist Methodology
of Control Design and Test

Optimized Design With
Test Validation

Figure 2.4-1 Harris' Phase I CSI GI Efforts Proved OPUS Design Tools and Integrated

them within a Practical Design and Test Methodology
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The process for development can be roughly split into three stages:

(i) open-loop testing and modelling,

(ii) inherently robust decentralized design, and

(iii) advanced centralized design.

When properly executed, this process yields a set of designs of incrementally increasing

performance (and complexity) which can be traded to obtain an optimal compromise.

In the first step, open-loop testing, is performed on the integrated hardware and the test

data utilized, via ERA or equivalent, to generate system dynamics models. This allows controls

design to proceed not with idealized models but with actual test data including all the vagaries of

hardware.

The second step, which can sometimes be performed during the same test period as the

first, is to try out an inherently robust (rate feedback or positive real), decentralized design. Such

a design yields valuable insight into the effectiveness of the control hardware and the performance

improvements that are realistically possible. Typically this design is extremely simple and does

not involve any connections among separate hardware units. The exercise of perfecting a

decentralized design, however, does force the designer to understand the physics of the system

and allows him to individually tailor each control subsystem according to insight and discretion.

Finally, the design and demonstration data developed in the first two steps are applied to

an advanced multivariable design using OPUS. At this point, the designer has the benefit of

closed-loop tests using the hardware in question, a system model that has evolved (via application

of ERA) from several test iterations and good insight into the physics of the system behavior. All

of these are prerequisites to effective problem formulation, which is the key step in application of

modern tools like OPUS.

The Phase I results show that the basic design/test methodology and its underlying tools

are well in hand and have seen successful demonstration on non-trivial test articles. Thus at this

point, two questions naturally arise: "Can we speed up the design/test process?" and "Can we

substantially automate the process?" One of the main thrusts of the phase II effort was to answer

these questions.
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3. PHASE II - OVERVIEW

As described in the previous section and illustrated in Figure 3-1, the practical design/test

methodology we evolved on Phase I typically entails a sequence of three on-site test sessions

interspersed with modelling and control design steps. At the start of Phase II, the progress of our

work was somewhat beyond the stage of evaluating the relative benefits of different control

algorithm design methods. Moreover, our overall methodology was found to work wello

Therefore, to secure the greatest degree of progress, the Phase II CSI GI activity thrusts toward

streamlining and automating our incremental design and implementation process and toward the

experimental demonstration of new modular and productized vibration suppression hardware.

The first task was to compress or speed up the whole process shown at the top of Figure

3-1 into a single-session, on-site controls design and test methodology.

Speeding up the design/test process would not only reduce engineering development time,

it would also benefit system operations on future NASA missions. In one sense, our incremental

design/test methodology demonstrations for CSI testbeds to-date have been ground-based "dress

rehearsals" of a corresponding on-orbit design/test methodology. In this scenario one designs an

initial pre-flight control system that is low performance but very robust. Once the system is

deployed on-orbit one conducts system ID tests by ground commands, and down-links test data

via telemetry. On the ground, this data is used for system ID and design of a refined, improved

performance controller. The refined controller gains are then up-linked to the on-line control

processor. This process continues until all mission-driven performance specifications are met.

The process is also repeated whenever the in-mission structural properties change and/or

equipment failures cause performance to degrade. Now, the current design/test methodology

typically involves on-site test sessions of a few days alternating with longer off-site analysis and

design episodes. This translates into on-orbit controls refinement requiring significant access to

the hi-reliability mission hardware spread over considerable calendar time. Drastic compression

of the on-orbit design/test process would allow design refinement to occur in one brief bout,

thereafter freeing on-orbit hardware to perform its intended missions.

In addition to the above long-term benefits, a streamlined design/test process turned out to

be a necessity for successful results on Phase II because of unforeseen shifts in program

resources.

Originally, the Harris team was assigned to the Controls, Astrophysics and Structures

Experiment in Space (CASES) facility at NASA/MSFC for the full two year duration of the CSI

GI Phase II Program. Figure 3-2 shows the planned schedule for the first year which called for

test results six months into the program. Based on the actual start date, this first test session was

planned for December 1991. However, because of test facility readiness delays, the first test

session was held August 3-7, 1992. Moreover, although open-loop response data covering
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YEAR #1: CASES (MSFC)

Based on actual start, I st test session was

planned for December '91.

Because of test facility readiness delays,

i st test session was held August 3-7, '92.

Data received before I st test session:

Open-Loop response data, 1-20 Hz.

Figure 3-2 Year 1: Cases (MSFC)
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the 1 to 20 Hz frequency bandwasprovided prior to the August test, thedominant modesof the
CASES structureareall below 1Hz. Finally, shortly after theAugust test session,the CSI

programactivity at NASA/MSFC was terminated. Consequently,executionof a single-session,

on-site design/test methodology was rendered a necessity.

To streamline our incremental design/test process we first implemented new, faster

converging homotopy methods for solving the OPUS design equations. We also devised a

practical, streamlined methodology for application of ERA to automated model acquisition from

test data.

In a few days in August 1992, control design for the CASES testbed was addressed. As

described in a subsequent section, the main structure of CASES is a 103.5 ft Astromast truss

beam. As in Mini-MAST the control objective is to suppress tip displacements due to impulsive

disturbances. With no prior relevant modelling information and in a single test session, the results

shown in Figure 3-3 were obtained. This Figure compares the open-versus closed-loop tip

displacement. Note that the open-loop response of the CASES structure "rings" far longer than

the Mini-MAST. Moreover, there is a previously unidentified 1/50 Hz mode. But, as in the case

of the Mini-MAST the closed-loop system response damps out in one (primary mode) cycle.

However, unlike Mini-MAST, the CASES results shown in Figure 3-3 were obtained in a single

test session not a sequence of three sessions.

For the second year of the Phase II program, the Harris team was re-assigned to the CSI

Evolutionary Model (CEM), Phase II testbed at NASA/LaRC. Besides the by now customary,

vibration control design and test activity on the CEM, our plan was extended to encompass

validation of modular, productized technology components. These additional activities included

simulation and test of an adaptive neural control (ANC) algorithm in order to progress toward

autonomous spacecraft control and experimental demonstration of the Harris Vibration

Attenuation Module (VAM), a new approach to active vibration isolation.

The originally planned schedule for the three CEM activities is shown in Table 3-1. This

plan called for the test of the OPUS fixed-gain controller in late May 1993, test of the ANC in

July, and two tests of a VAM unit (fabricated on a Harris IR&D program in June and July, 1993)

on the CEM in late August and mid-September. In the following, we briefly describe the actual

progress made and the necessary modifications to the above schedule.

First, the CEM testbed, shown in Figure 3-4 emulates the dynamics of a multi-sensor

space platform and features several simulated sensor packages (SIS's) gimballed off the main

structural framework. The basic method of exercising this testbed is to disturb the structure by

commanding (broadband or in scan mode) the gimbal package of one SIS and then using the

control instrumentation on the structure to maintain the pointing accuracy of the remaining SIS's.
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LOS Response - Open-Loop Versus Han4.s" Curt-era GI

Phase 2 Control Deign

TDSdy Response to DSy Pulse (BLTx, MC5 full;BLTy @2)
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_o _ _ 7'0 _ _o _io

Time (sec)

Figure 3-3 These CSI Program Phase II Control Design Results for the MSFC CASES

Testbed were Obtained by the Harris Team During the First Test Session with No Prior

Modelling Information
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PNS
OSS

SiS

OSS

SIS- Science Instrument Simulator
OSS - Optical Scoring System
PNS- Pneumatic Suspension

Figure 3-4 Phase 2 CEM: A Multiple Payload Platform
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Using the eight accelerometersandeight thrustersdistributed over the structure,the
Harris team committed to the design and test of an OPUS control algorithm. The main thrust of

this effort was to continue our progress in developing streamlined design/test methods, working

toward the goal of a reliable single-session controls implementation methodology.

Here again, unforeseen changes in program and facility schedules rendered on-site single

session design a necessity. Although excellent system models were finally provided by

NASA/LaRC, there was an approximately three month delay in assembling the modelling data.

Thus, the first CEM test session (see Table 3-1) was delayed until late August 1993. Moreover,

NASA's plans called for the re-configuration of the CEM into the present EOS-like configuration

(CEM, Phase III) in September 1993. Thus the August test session turned out to be the only

experimental opportunity on the Phase 2 CEM.

Nevertheless, armed with accurate system models provided prior to the CEM test session

and with our experience with the streamlined methodology acquired in CASES testing, we

succeeded in designing and implementing a high performance controller, as indicated by the

experimental data in Figure 3-5. This shows open-versus closed-loop target plane traces from

one of the Optical Scoring Systems (of Gimbal C) when the structure is excited by a scanning

disturbance by one of the other SIS's (Gimbal A). Clearly there is very significant LOS error

reduction for this narrowband disturbance and a 50 to one reduction in RMS error was achieved

for broadband disturbances.

Following the single session, fixed gain control system implementation exercise we

embarked on qualitatively new efforts involving the CEM, as illustrated in Figure 3-6. Fhst, we

attempted a qualitative advance in control design and test automation and autonomy by testing the

Adaptive Neural Control (ANC) technology under development for several years. Secondly, we

sought to demonstrate a qualitative controls hardware advance (and facilitate a significant

technology diversification) by testing a self-contained active isolation system--the Vibration

Attenuation Module (VAM).

The motivation of the first effort above was the realization that if one could systematize

and streamline a human-operated design/test process, one ought to be able to automate the entire

process. This is the thrust of the new adaptive neural control (ANC) processing architecture

developed at Harris over the past several years and significantly refined via collaboration with

NASA/LaRC personnel--notably Drs. J.-N. Juang and M. Phan. Essentially, ANC is a logical

extension of our efforts on CASES and CEM to streamline and reduce engineering development

time for structural control implementation. ANC takes automation to the limit by executing on-

site design with little or no human intervention. More specifically, the ANC algorithms builds,
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Figure 3-5 Harris CSI Activity Demonstrated High Performance Structural Control on the

CEM Testbed
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Figure 3-6 Harris GI Phase II Research
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on-line, an internal model of the plant and, again on-line, determines and implements an optimal

control within a model reference adaptive scheme°

The CEM facility reconfiguration and the scheduling difficulties described above in

connection with the fixed-gain controller tests precluded an ANC test session by the Harris team.

However, due to long-term collaboration in the ANC area and preparatory technology transfer

activities, NASA/LaRC personnel were able to implement and test a basic version of ANC on the

Phase 2 CEM, with the algorithms executed by the on-line computer° The excellent experimental

results obtained are illustrated in Figure 3-7° After a ten second learning period, the ANC

algorithm applies its controller to suppress LOS error of on SIS due to disturbances injected via

command inputs to another gimbal package°

The above results show that ANC is practicable and fully achieve the technological

objectives of our GI plan. Altogether these results are another excellent example of rapid

technology development through NASA/Industry collaboration and technology transfer.

A second novel effort on Phase II of the GI program was to test the Vibration Attenuation

Module (VAM). This is a hexapod mount employing a new approach to active vibration

isolation. VAMs actively cancel vibration transmission from spacecraft generated disturbances

into precision pointing sensors. This is done without reducing the passive stiffness of the

equipment mount--thereby permitting both vibration isolation and precision pointing. In bench

testing 20-30 dB of isolation over 10 to 200 Hz has been repeatedly demonstrated.

Basically, the VAM is an outgrowth of our entire CSI GI experience and similar

experimental work on other testbeds. The totality of the work has shown that, perhaps the most

critical element of a structural control design - even more fundamental than the one-line algorithm

in establishing the level of achievable performance - is the overall architecture -- i.e. the types of

actuation and sensing, the basic information patterns, etc. These architectural considerations

clearly point to the need for active vibration isolation serving as a key component in the overall

vibration suppression strategy. Furthermore, our GI experience directly underscores the

importance of simple modular control channels and modular, self-contained architectures. From

these insights, a new highly effective isolation approach was developed and then embodied in the

self-contained VAM package.

By November, 1993, a VAM unit was fabricated and bench tested within a Harris IR&D

program. Figure 3-8 shows a photograph of this unit. In an on-site test session February 22-24,

1994 at NASA/LaRC, the VAM hardware was installed on the new CEM Phase III configuration.

As shown in Figure 3-9, the VAM replaces the SIS support truss, connecting the gimballed sensor

package with the main CEM structure. Test results illustrated in the right-hand portion of the

Figure show excellent broadband isolation performance.
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Figure 3-8 VAM Photo
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The VAM effort represents the use of NASA's CSI facilities to help validate self-

contained, productized vibration suppression hardware° VAMs and their components have

numerous commercial and non-space applications. The success of the VAM effort is a third

excellent example of how Industry/Government program coordination and technology transfer

result in accelerated development and important technology diversification.

The details of the Phase II activities briefly reviewed above are given in the remainder of

the report. The robust fixed-gain control design and test efforts on the CASES and Phase 2 CEM

testbeds are described in Section 4. Further details on the Adaptive Neural Control technology

are given in Section 5. Finally, Section 6 discusses the Vibration Attenuation Module testing
activities.
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4. PHASE II -- ROBUST, FIXED-GAIN CONTROL DESIGN AND TEST

RESULTS

In this Section, we give detailed discussions of the robust fixed-gain control testing

activities on both the CASES and CEM-Phase II facilities. The original schedule and the various

scheduling changes that became necessary have been described in the preceding Section. The

actual schedule of events on Phase II, is given in Table 4.0. As has been noted, a delay in the

CASES hardware readiness resulted in the first test session being held in August 1992. A brief

follow-up test session was executed in November 1992. Details of the CASES activity are given

in Section 4.1.

Modelling and design activities for the CEM testbed began in March 1993 and the single

CEM test session was executed in August 1993. The following month, the testbed was

reconfigured into the CEM Phase III configuration. Details of the CEM design and test activities

are given in Section 4.2.

4.1 Control Design and Test Activities on the CASES Testbed at NASA/MSFC

CASES Facility Description

The Controls and Structures Experiments in Space (CASES) facility, a schematic of which

is shown in Figure 4.1-1, is located at MSFC in the high bay area of Building 4619 [32]. CASES

emulates the dynamics and CSI issues for a pinhole occulter concept for space-borne astrophysics

studies. The test article is vertically suspended from a platform at the 132 foot level. The

disturbance system will provide two translation Degrees of Freedom (DOF). A simulated Mission

Peculiar Experiment Support Structure (MPESS) interfaces the disturbance system with the test

article to simulate a flight experiment interface between the Shuttle, MPESS, and the payload.

The CASES test article consists of a 105 foot boom which supports a simulated occulting plate at

the boom tip. The control objective is to maintain alignment of the tip plate with the simulated

detector at the MPESS. In terms of a flight system, this would allow the occulting plate to point

towards a star to perform an X-ray experiment. Control authority is provided by Angular

Momentum Exchange Devices (AMEDs), thrusters and a motor.

Referring to Figure 4.1-1, the primary structural component is the 105 foot Solar Array

Flight Experiment-I (SAFE-I) boom which has been modified for the CASES facility. The boom

has 135 individual bays, weighs about 25 lbs, and retracts into a cannister 72 inches long. The

boom has a triangular cross section with 10" sides. The longitudinal members (longerons) are

continuous elements composed of a fiberglass composite.
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The simulated MPESS, which emulates the Shuttle/experiment interface, has 4 horizontal

bays where each bay is 28" x 28" x23". The MPESS is connected to the tripod via a 5 ft pipe

(16" diameter), a 1" thick aluminum interface plate, and several plates which act as bending and
torsional stiffeners.

The tip plate, which simulates an occulting plate, was designed and fabricated by the

University of Alabama Aerospace Engineering Department. The plate has four simulated masks,

is about 80" x 80" excluding the boom/plate interface device, and weighs about 70 lbs. A simple

bungee cord suspension system (bottom of Figure 4.1-1) was designed to off-load the tip plate.

The disturbance system provides two translational degrees of freedom at the base of the

experiment (top of Figure 4.1-1 ). Disturbances are provided via two orthogonal shakers which

translate an air-supported tripod to which the test article is attached. The tripod supports the

experiment (boom) through the simulated MPESSo Each shaker (Unholtz-Dickie Model 6)

provides 1000 lbs peak sine force with a + 3 inch stroke and a 1000 Hz bandwidth. A Linear

Motion System (LMS) interfaces each shaker with the tripod to allow for low-friction motion in

two directions simultaneously.

The control actuation system consists of two single-axis AMEDs at a mid-length position

on the boom, two or three single-axis AMEDs at the boom tip and two single-axis thrusters at the

boom tip. (See Figure 4.1-2).

The AMEDs are used for vibration suppression at a mid-point and at the tip of the boom.

The midlength AMED package consists of two motors attached to reaction wheels and two 2-axis

gyros. The tip AMED package has two motors with reaction wheels and two 2-axis gyros. Each

housed motor weighs 14 oz. and has peak rated torque of 290 oz-in.

Two orthogonal thrusters are provided for vibration suppression. It should be noted that

vibration suppression of the low frequency modes (0.15 Hz) is somewhat comparable to pointing

control. The Boeing thrusters are bidirectional, linear, cold gas thrusters with a force capability of

+ 2 lbs up to about 10 Hz. Each thruster weighs about 4 lbs. The linearity of the thruster forces

makes the control design easier than in the case where on/off thrusters are used as control

actuators.

The measurement system consists of angular velocity and acceleration sensors at the base,

boom angular velocity sensors in the mid-length and tip AMED packages, tip acceleration

sensors, and a Tip Displacement Sensor (TDS). Auxiliary measurements include reaction wheel

speed, AMED motor current, and fault indicators.

The TDS is an optical sensor which provides two translational measurements at each of

four target locations on the tip plate. The TDS is composed of two linear Charge Coupled

Device (CCD) detectors, each having an optical lens system and signal processing to provide

4-4

i'¸ i • - ! • • • •

_ • _i I _•• i ¸



Boom

BLT PC Boards (2) &
F1owmeter Etec

BLTs (2)

Motor and
Reaction Wheel

Tip AMEDs

Motor Controllers (3)

PC Boards (14)

Power Reg PC
Boards (2) in

Enclosure

Tip Plate

Accelerometers (3)

MA 4,5.6

-- Heat Sinks

Mounting C .'._ m

Side View

Y

Z

Note: Drawing

Not To Scale

Mounting Ch a-_,s=s
_.E:cL_Iing Boom "_p Rin4j

MA 1,2,3 -
AM ED/'T'_ Mounting Prate

,__ Mounting

MA 89 = MA 91 -'q' MA 90

4 _,__,' _'"'_"'= Tip Extender

MA 92 It -- MA g3

MA 95 ' MA 96

MA 98 L[_
"_"_" Accel Mountin 9 B;ock

MA 95 MA £6

,_;ote: Five holes exist on the tip plate for boom tip mounting
Two holes must be drilled to mount accels

Holes may need to be drilled to mount tip extender

Figure 4.1-2 Boom Tip: Side View

4-5

,:_ :" k ¸ i "



subpixel accuracy. The two detectors are located on the MPESS and the four active laser diodes

serve as targets on the tip. The TDS provides 2 translational degrees-of-freedom for 4 targets at

a rate of up to 500 Hz with an accuracy of 0.01 ".

Preparatory Activities: Implementation of Streamlined Modelling and Design Tools

As noted above, the first CASES test session had to be postponed for approximately eight

months owing to unforeseen test facility hardware integration delays. When the possibility of

significant delay became apparent it was clear that a greatly compressed modelling, design and

test schedule would have to be implemented. Consequently, some initial efforts were devoted to

the development and integration of streamlined tools for system identification and OPUS control

design in the hope these would permit faster design turnaround once the CASES hardware

became ready for testing.

The first candidate for streamlined operations was the area of system modelling for control

design. Due to the labor and time generally required for the development and refinement of finite

element models (FEMs), we decided during Phase I to extract system models directly from test

data using the Eigensystem Realization Algorithm (ERA). Because of the test facility readiness

delay noted above, there remained virtually no time to develop system models via FEM's that

could be corrected with test data. Thus use of ERA was the only tenable option.

To prepare for a very rapid modelling and design exercise we first obtained the MATLAB

toolbox "System/Observer/Controller Identification Toolbox" [33] developed by LaRC

researchers to implement more efficient versions of ERA. To ensure that our GI team could use

this toolbox quickly and effectively, we exercised it on numerous test cases--both analytical

examples and in-house testbeds. In the process, a practical methodology was worked out for

rapid system ID, as reported in [34]. We provided crucial demonstration of the ERA application

process on the Harris Multi-Hex Prototype Experiment (MHPE) [35]. Without prior preparation,

a 60 state model of the MHPE with six inputs and six outputs was derived from test data in a

single afternoon! As evidenced by Figure 4.1-3 the frequency responses of the ERA model

closely matched those derived directly from the test data.

The above identification process uses the ERA/DC algorithm. However, we also

incorporated the use of the Observer/Kalman Filter Identification (OKID) [33] algorithm that

allows simultaneous system identification and Kalman filter design. The successful use of this

algorithm further integrates the identification and control design process, leading to further

streamlining of the overall design process.

Seeking similar improvement in the control design process, Harris implemented in a

MATLAB environment a new class of homotopy algorithms [36, 37]. These algorithms allow the
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design of robust and reduced-order controllers for both continuous-time and discrete-time

systems. The speed of these algorithms are vastly superior to the speed of the previous homotopy

algorithms. In addition, their convergence is not dependent on finding initial conditions that are

close to the desired answer. This global convergence property allows the reliable design of

robust, reduced-order controllers.

In addition, Harris has demonstrated novel algorithms for robustness analysis. State

space, Popov analysis was applied to a benchmark problem [38] and, as illustrated by Figure 4.1-4

was shown to give much less conservative results than the small-gain and positivity test. In fact,

for this example Popov analysis was completely nonconservative In addition, a new majorant

analysis technique [39] has been developed and implemented at Harris that allows the

development of frequency domain performance bounds for positive real systems. These new

bounds are less conservative than previous methods. User friendly MATLAB packages were

developed to allow the implementation of Popov and majorant analyses.

With the above improvements in place, it was apparent that our incremental designXtest

methodology which normally entailed three test sessions alternating with in-house analysis and

design efforts could be considerably compressed. For example, the new faster tools would allow

one to perform open-loop testing, extract an accurate model, determine an initial robust control

design and then test the design--all in the first test session. Thus one test session can achieve the

results that previously required two sessions and an interim period of analysis.

CASES Test Session 1

The CASES facility was integrated and operational just prior to the Harris team% test

session scheduled for August 3-7, 1992. At this point, the finite element model was not yet

correlated with open-loop test data. Open-loop data was provided for the frequency band 1 to 20

Hz. However, the dominant modes of the structure are all below 1 Hz. In the absence of

accurate modelling information for the bandwidth of interest, this was a good opportunity to try

our compressed "on-site" design methodology using the streamlined tools and procedures

described above.

Our initial control strategy, based on the overall testbed set up was to use the collocated

AMED-GYRO loops to augment the beam damping then close the Thruster-LOS Detector loops

to enable the laser to track the detector. In preparation, four "template" control designs were

devised based on the extremely preliminary modelling information at hand. The initial test plan

was to (a) perform open-loop tests to characterize performance and to execute system ID, (b)

perform closed-loop tests with simplel robust controllers designed on site (so as to gain insight

into strategies to be used for more advanced designs) and (c) perform closed-loop ID and

generate and test more advanced designs for improved performance.
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From the initial open-loop testsa goodmodel of thedynamics below 1 Hz wasobtained.
Performance(LOS error asmeasuredby the detector)dueto pulse disturbancesfrom the base
disturbancesystemwasseento bedominatedby the first bendingmodesnear0.1 Hz. In addition,
previously unknown ultra-low frequencyoscillation wasobservednear0.01 Hz. This was

apparentlyassociatedwith the bungee-cordtip plate suspensionsystem. Furthermorethefirst
torsion modewas found to behighly coupledwith the lowest bendingmodes. Finally, the open-
loop behaviormadeit evident that thetorque output of the AMEDs was insufficient for

satisfactorycontrol authority over the bendingmodes. Thruster-Detectorloops were deemed
more satisfactory for this purpose.

In responseto the aboveobservationsthe pre-test "template" controllers were not
consideredappropriateand were not tried. Instead,two new controllers (labelledcontrollers "5"
and "6") weredevisedhaving thefollowing architectures:

Controller "5"" (1)

Controller "6""

(2)

Close MC5-TGZ* loops to attenuate the first torsion mode (as

in Mini-MAST)

Close Thruster-Detector loops to attenuate the first bending

modes

To the setup of controller 5, add MC3-TGY, MC4-TGX loops

to attenuate higher bending modes.

These controllers were designed on-site then tested. Figure 4.1-5 shows the y-axis tip

displacement due to a base excitation pulse for the open-loop system and for the closed-loop

system with controller 5. As indicated in this plot open-loop vibration of the dominant 0.1 Hz

bending mode persists for a very long time. Also evident is the very low frequency "bungee-cord"

mode. Controller 5 succeeds in suppressing the dominant modes in approximately one cycle.

Although a higher frequency bending mode is apparent in the closed-loop response, this mode is

observed because it is excited initially by the pulse disturbance, not because it is amplified by the

controller. These 0.6 Hz modes are essentially outside the bandwidth of controller 5.

Controller 6 adds AMED-rate gyro loops in order to augment the damping of the 0.6 Hz

modes. Figure 4.1-6 shows open-and closed-loop responses for the same excitation conditions as

Figure 4.1-5. The results are very nearly the same as for controller 5 and little attenuation of the

higher bending modes is observed.

MC = Motor Controller (AMEDs)
BLT = Base Linear Thruster
TG = Tip Gyro
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The lack of improvement in controller 6 for the 0.6 Hz modes was due to poor modelling

information leading to insufficient control gain at 0.6 Hz. It was hoped that the needed

information would be provided by the planned closed-loop system ID tests. However, it was

noted from the results that the dynamic range of the Detector (N 40dB) prevents tests using

constant amplitude excitation of the thrusters from being effective for the identification of modes

beyond the first bending modes. Figure 4.1-7 sketches the situation. Essentially the system

response is below the "noise floor" at higher frequencies, so modal dynamics near 0.6 Hz could

not be identified. At this point, it was too late to repeat the closed-loop ID tests and the GI team

could not finalize the thruster-detector loop controllers during this test session.

The first CASES test session made significant progress toward the ultimate goal of a

single-session design/test capability. As summarized in Figure 4.1-8, results normally requiring

two test sessions in our incremental methodology were achieved in one session. Furthermore, as

in the case of Mini-MAST, the controller succeeded in damping the dominant lowest bending

modes within one cycle. However, although this was tried, we could not wrap up the design

process in a single session and attain high gain control of the second order bending modes.

Hence_ we planned an off-site closed-loop identification (based on additional ID tests to be

performed by NASA/MSFC personnel) followed by an advanced control design and a second test
session.

The above plan was carried out despite the fact that, shortly after the first test session, it

was determined that MSFC's CSI activity and the testbed support would soon be terminated. The

off-site modelling and design activity was accelerated and a second test session was held in late

November 1992.

Refined Designs and Second Test Session

Subsequent to the first test session, analysis was performed to determine how the

performance of the initially tested controllers could be improved. It became evident that the

bending mode control requires higher bandwidth in order to attenuate the higher order bending

modes and achieve greater attenuation of the lowest bending modes. This improvement can be

accomplished by using the Thruster-Gyro loops to control bending modes since these modes are

more strongly observable from the gyros. Also the thrusters are the only actuators with sufficient

authority to significantly improve bending mode control.

Having formulated the above strategy, we first determined refined state-space models

using the Harris methodology for applying ERA/DC to the first test session data. Using the

refined model, we designed LQG controllers for precompensated Single Input, Single Output

(SISO) plants (for the BLTx-TGy and BLTy-TGx loops) and then applied Maximum Entropy
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design to reduce model error sensitivity, where appropriate. Finally, the order of the full order

dynamic compensators were reduced via balancing to arrive at low order, more conveniently

implementable controllers.

Two candidate controllers were obtained through the above procedure:

Controller 1: Uses the same MC5-TGZ design (to control the torsional mode) tested on

site, coupled with BLTx-TGy, BLTy-TGx compensators. The total number of states of this

controller is 18.

Controller 2: Identical to controller 1 except that first order high pass filters (0.03 Hz

corner frequency) are added to the thruster loops. This was done to provide added stability

margin in the event that controller 1 somehow excites the ultra-low-frequency behavior that is not

precisely characterized.

Figure 4.1-9 shows the compensator magnitude plot and Figure 4.1-10 shows the

corresponding loop transfer function for the controller 1 BLTx-TGy loop. The compensator

maintains high gain out to the higher order bending mode near 0.6 Hz then rolls off, beginning

roughly at 1.5 Hz. Characteristics of the BLTy-TGx compensator are similar. Figures 4.1-11 and

4.1-12 show corresponding results for Controller 2. The impact of the high pass filter is evident

at the low frequency region in Figure 4.1-11.

The above controllers were tested in late November, 1992. At the start of this test

session, it was found that high pass filters were needed on the Z-axis gyro output because the

gyro biases were not removed from the measurements. The required high pass filters were added

to the MC5-TGZ loop on-site.

With the above modification, the new controllers were tested. Test results showed

improved performance on the higher frequency modes but the new designs sacrificed some

performance on the lowest bending modes, relative to controller 5 of the first test session. This is

illustrated in Figure 4.1-13 which shows the X-axis tip displacement time histories for controller 2

of the second test session (part (a)) and for controller 6 of the first test session in response to an

impulsive base disturbance input. In both plots, the open-loop response is superimposed.

Whereas, the earlier controller (Figure 4.1-13.b) damped the primary bending modes in a single

cycle but did not suppress the higher bending modes, the revised controller (Figure 4.1-13.a)

added damping to the higher modes but damped the primary modes in approximately three cycles.

The behavior of the revised controller can be attributed to reduced loop gain at the primary mode

frequencies due to the use of gyros instead of detectors, and had time permitted this would have

been easily rectified. On the whole the results show that the best type of controller would be a

hybrid of the first and second session designs, involving the feedback of both gyros and detector

measurements to both thrusters and AMED's at the tip. However, since the NASA/MSFC CSI

activity had already been discontinued there was no opportunity to further refine the design.
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In summary, several conclusions may be drawn from the CASES testing experience. First,

the initial test session results indicate that on-site design of controllers can be quite effective°

These results also show that careful thought needs to be given to the form of the excitation used

for system identification tests. It is not always sufficient to vary the frequency content and test

duration, but may also be necessary to vary excitation amplitude versus frequency. The advanced

design techniques and revised architecture of the refined controllers allowed for increased

bandwidth, but the use of gyros instead of detectors sacrificed some performance on the lowest

bending modes° Finally, the results validated a streamlined "Gradualist" approach to control

design implementation and test although practical and programmatic obstacles did not permit the

final step in design refinement. On the whole, complete on-site design requires the supply of

some identification data prior to the test session.

4.2 Control Design and Test Activities on the CEM Testbed at NASA/LaRC

For the second year of the Phase II program, the Harris team was assigned to the CSI

Evolutionary Model (CEM), Phase 2 testbed at NASA/LaRC. As discussed, several diverse

activities were accomplished on the CEM. This section describes only the fixed-gain control

design and test activities that were carried out using the structure-mounted thrusters and

accelerometerso

CEM Facility Description

As illustrated in Figure 4.2-1, the Phase 2 CEM testbed (see [40]) assumes the form of a

multi-sensor space platform with several simulated sensor packages (SIS's) gimballed off the main

structural framework. The structure is disturbed by commanding (broadband or in scan mode)

the gimbal package of one SIS. We briefly describe the various components of the system as

follows.

The overall structure consists of a three-dimensional aluminum truss 620 inches long

constructed from 10-inch cubical bays° The truss has a 62 bay long main bus, four 2 X 5 bay

horizontal suspension trusses, an 11 bay vertical laser tower, and a four bay vertical reflector

tower. There are three two-axis gimbals mounted on the main bus. Also a 17-inch diameter

reflector is mounted at the top of the vertical tower on the aft end of the structure. All main

components are labeled in Figure 4.2-1. Four cables support the structure from the ceiling, each

cable in series with a pneumatic suspension system. Active suspension allows all six suspension

modes to have a frequency less than 0.2 Hz.

An important component of the global line-of-sight (LOS) pointing subsystem is the

reflector which consists of a 17-inch diameter 0.375-inch thick aluminum plate with a 10-inch

diameter, 0.25-inch thick mirror mounted on its surface. A steel circular plate 1.25 inches thick

and 16.5 inches in diameter is mounted on the back of the aluminum plate to stiffen and add mass
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to the structural appendage. A tapered truss bay on the upper part of the aft truss tower supports

the reflector at a 39.1 degree inclined position°

To monitor the LOS pointing accuracy, a laser mounted on the forward vertical truss

tower is pointed towards the reflector and the laser beam reflection is measured by a photo-diode

array over 600 inches above the reflector. This laser-reflector-detector system allows laser

position measurements to within 0.3 inches. Laser position is sampled and forwarded to the main

computer at a maximum rate of 50 Hz.

To simulate interation of instruments mounted on a spacecraft and the spacecraft control

system, three two-axis gimbal systems were fabricated and installed on the model. The locations

of the gimbal systems, known as the Science Instrument Simulators (SIS), are shown in Figure

4.2-1. Each gimbal system is capable of slewing or pointing to a fixed point on earth with a

pointing jitter of less than 2 arc-seconds. Angular measurements are obtained using an Optical

Sensor System (OSS) mounted on the floor underneath the gimbals.

The gimbal structure consists of two pivoting aluminum rings that are coplanar and

concentric when in the null position° Axes associated with the interior and exterior gimbal tings

have been named the "inner" and "outer" axis, respectively° Each ring has a motor module on one

end, and sensor module at the other end. Each motor module includes a torquer and cable wrap-

up mechanism. The sensor module includes an optical encoder, interpolation electronics,

electromagnetic brakes, and a cable wrap-up for the payload and inner gimbal sensor module.

The gimbals are controlled via a 386SX computer that reads encoder pulses, and

commands the gimbal torque motors. During gimbal operation, this computer provides

commands to control gimbal brakes, motor torque, and also provides status information to

maintain communications with the main computer.

To test the gimbal with a realistic inertia and payload, a dummy payload is mounted in the

two-axis gimbal. The dummy payload assembly, consists of two steel quarter sections, a top

aluminum plate with a mirror and plate bracket, a bottom aluminum plate with a laser mounting

clamp, a laser, and mounting ring. The payload is tailored to have a higher mass moment of

inertia about the inner axis than the outer axis to counterweight the smaller outer axis inertia. A

laser source is clamped at the payload bottom plate and is pointed towards the Optical Scoring

System.

The Phase 2 CEM capabilities are summarized in Table 4-2. The experiments performed

by the Harris GI team disturbed the structure using one SIS and monitored the pointing errors of

the remaining SIS's with their associated OSS's. The controls actuation and sensing devices used

in closed-loop testing consisted of the eight accelerometers and eight thrusters distributed over

the structure. Using OPUS control design technology, we continued our progress in developing
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Table 4-2 Phase 2 CEM Capabilities

Platform

Physical Properties
620 inches long, 110 inches wide, 120 inches tall
-900 Ibs in weight (50 % Truss)
Ixx~8000 Ib-in2-s2, lyy-lzz~100000 lb-in2-s2

Dynamic Properties
6 Rigid Body Modes < 0.2 Hz.
First Flexible Body Mode ~ 1.85 Hz.
~20 Dominant Structural Modes Below 20 Hz.

Science instrument Simulators

Three two-axis gimbals
Up to 25 lb Payload, CG offset < 5 in.
15 degree range of motion
2.5 arc-sec pointing resolution
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streamlined design/test methods, working toward a reliable single-session controls implementation

capability.

Pre-Test Modelling and Control Design Activities

During year 2 of the Phase II program, during which the Harris team was assigned to the

CEM testbed, there wasan initial three month delay in assembling the modelling data. Further

scheduling conflicts forced a first test session in late August. Moreover, in September, the CEM

was scheduled to be reassembled into an EOS-like configuration (the CEM Phase 3

configuration). Therefore, once again, a single-session, on-site design was required. The above

scheduling difficulties were offset, however, by the provision of accurate models before the test

session, thereby providing a good start toward initial control design.

The CEM modelling data supplied by NASA/LaRC consisted of several items: (1) a

detailed finite element model (FEM), (2) Frequency Response Function (FRF) test data obtained

by LaRC in June and (3) an ERA model. Inspection of this data showed that the off-diagonal

(noncollocated sensor/actuator pairs) transfer functions were not of sufficient fidelity to support

the design. Also the very low frequency (quasi-rigid-body) mode FRF data was also of

insufficient fidelity due to inadequate data averaging periods. Consequently, we devised a hybrid

model derived from the FRF (and ERA) data for the higher order modes and the FEM data for the

quasi-rigid-body modes.

The above points are illustrated by a comparison of transfer functions obtained from FRF

data, the FEM and the ERA model. Figure 4.2-2 shows such a comparison for a typical transfer

function. It is seen that for modes above 1 Hz, the ERA model yields virtually exact agreement

with the FRF data. Consequently, our control design model relied on ERA in this frequency

regime. The quasi-rigid-body modes near 0.15 Hz are poorly estimated by ERA and the FRF

measurements because of insufficient dwell time. In contrast the FEM model gives an accurate

rendering of these modes, but relatively inaccurate results for the elastic modes above one Hertz.

Our control design model truncates the states associated with the low frequency dynamics in the

ERA model and substitutes modal data obtained from the FEM. The resulting model has

excellent accuracy over the entire frequency range of interest.

The accurate model we were able to obtain permitted a good head-start in controller

design prior to the test session. The control design activity considered only the use of the eight

thrusters distributed over the CEM structure and the eight collocated accelerometers. The

control objective was to stabilize the pointing performance of one SIS in the presence of

disturbances generated in the structure by commanding one of the SIS's in either a scanning

maneuver or a relatively broadband repointing maneuver. This is a meaningful control exercise

because it shows the beneficial impact of structural vibration suppression in the multi-sensor
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platform on the effectiveness and bandwidth of the Bendix 2-axis pointing gimbals of the SIS

assemblies. Vibration control not only reduces the range of motion that must be handled by each

gimbal, it stabilizes vibration modes that might otherwise be destabilized by the gimbal pointing

servos. This permits greater bandwidth in the gimbal servos, further enhancing performance.

To reduce low frequency noise and drift, we filtered the accelerometer outputs with

standard "roof top" integrators (so called because their Bode gain plots resemble a roof top - with

+ 1 slope below the integrator corner frequency and -1 slope above this frequency). The roof top

integrator poles were placed at 0.05 Hz in order to phase stabilize the quasi-rigid-body modes.

With the roof top integrators incorporated into the design model, OPUS software was exercised

to obtain a decentralized design with more than 20 to 30 dB loop gains on all significant modes.

These features are illustrated in Figure 4.2-3a, b which shows the gain and phase for a typical loop

transfer function° Including the sensor post-filters, the total controller order was 28 states.

On-Site Design and Test Activities and Results

For on-site testing August 23-24, 1993, disturbances were injected at gimbal A and line-

of-sight (LOS) errors were monitored at gimbals B and C. Originally, a broadband random

gimbal disturbance command was specified but open-loop tests quickly showed that the response

magnitudes were too small relative to the LOS sensor resolution. Since the broadband

disturbance provided inadequate signal-to-noise ratio, we elected to use a sine dwell disturbance

on both gimbal axes independently° The following amplitudes and frequencies were used:

Outer gimbal (X-axis):

Inner gimbal (Y-axis):

10,000 arc-sec amplitude

1.7 Hz frequency

15,000 arc-sec amplitude

2.433 Hz frequency

The above frequencies are close to the resonance frequencies of several dominant modes.

Consequently, response amplitudes were well above the LOS sensor resolution.

On the first trial of the pre-test control design, the low frequency drifts of the

accelerometers were found to be excessive. To remedy this, we raised the roof top integrator

pole frequencies to -1 Hz. Recall that these frequencies were initially chosen at 0.05 Hz to phase

stabilize the quasi-rigid-body modes. However, this was unnecessary because these modes are

not significantly excited. With the high roof top pole frequencies, drift ceased to be a problem.

The resulting design (having all other characteristics the same as the pretest design) is designated

as "controller 1 ".
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After testing controller 1, further attenuation of a rotational/rocking mode (along the X-

axis) was sought. The control loop for one thruster on the laser tower was redesigned to achieve

greater authority over one of the quasi-rigid-body modes. The resulting controller is designated

"controller 2".

Closed-loop tests were documented in a video recording which shows the dramatic LOS

pointing improvements of both controllers relative to the open-loop. The tests results also

establish that controller 2 did achieve the desired improvements over controller 1.

To illustrate these points, Figure 4.2-4a shows the gimbal C LOS error trace on the target

plane in the open-loop. Total excursions are seen to be approximately 2000 and 1000 arc-sec, on

the two axes. The same plot for closed-loop operation using controller 1 is shown in Figure

4.2-4b. The total excursions are now approximately 400 and 50 arc-sec, respectively. The 400

arc-sec excursions along the X-axis are due to the torsional/rocking mode. In contrast, controller

2, as shown in Figure 4.2-4c, reduces the excursion to -100 arc-sec. On the whole, controller 2

achieves from 20 to 40 fold reduction in LOS error relative to open-loop.

The same general conclusion may be drawn from LOS time histories on the two separate

axes. For example, the time histories of the X-axis LOS error measurement are given in Figures

4.2-5a, b and c for the open-loop, closed-loop controller 1 and closed-loop controller 2,

respectively. As the open-loop plot shows, the system response is allowed to ramp up from the

time (t=0) at which the disturbance is initiated. In the closed-loop plots, the controller is turned

on at t=15 seconds. Controller 1 (Figure 4.2-5b) shows some significant oscillation at

approximately 0.4 Hz. As Figure 4.2-5c shows, this is suppressed by controller 2.

In summary, thanks to good pre-test modelling information and sufficient preparation of

controller designs, the CEM test experience shows excellent controller performance as a result of

a single design/test on-site session.
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5. PHASE II - ADAPTIVE NEURAL CONTROL FOR THE CEM

5.1 Background and Motivation

To progress beyond the streamlined, single-test session control implementation capability

demonstrated on the CASES and CEM test facilities, the activity described here attempts a

qualitative advance in control system autonomy. For the past four years, Harris has been

developing a new neural network architecture, called the Adaptive Neural Control (ANC)

architecture, to implement on-line systems identification and adaptive control systems. Basically

this thrust takes autonomy to the limit to execute on-site design without human intervention.

ANC developments began in 1989 with the discovery by Dr. D.C. Hyland of the new

neural architecture for identification and control. This architecture was refined and fully extended

to IIR (Infinite Impulse Response) systems thanks to informal technical collaboration with

NASA/LaRC personnel, most notably Dr. J.-N. Juang and his colleagues. The ANC architecture

has led to a sequence of successful demonstrations and new development efforts.

In particular, through collaboration with NASA/LaRC, an ANC-based algorithm was

implemented on the host computer and demonstrated on the Phase 2 CEM test facility. These

results constitute the first instance, within the CSI Program, of a totally automated design and test

process and one of the first steps toward autonomous space structure control systems.

Automation of the design test process is needed because the current methodology still engages

significant human resources. Since designs involving fixed-gain controllers must be updated

periodically to reflect in-mission changes in system dynamics, this implies burdensome ground

support activities. But, besides reducing engineering manpower requirements, such advances in

automation support NASA's long-term space exploration objectives for which autonomous

spacecraft involving self-reliant control systems are a necessity. Such robot explorers would have

to independently update control laws, detect faults and reconfigure control systems.

5.2 ANC Technology Overview

Much of previous work in adaptive control via neural networks (see [41] for an excellent

review) concentrated on highly nonlinear but low dimensional systems. In contrast, the ANC

architecture concentrates on neural schemes particularly geared to problems involving high order

systems exhibiting very broadband dynamics. As indicated in Figure 5.2-1 ANC combines tapped

delay lines with "static" neurons (each neuron is a two-way device incorporating a back

propagation path) to perform on-line system identification and adaptive control. The system

adapts in the presence of unknown persistent plant disturbances and instrumentation noise and

requires no detailed prior modelling information.
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There are several key features of this architecture that have made it particularly attractive.

First, although the architecture can be visualized as a neural network, the control scheme is

fundamentally a massively parallel, decentralized adaptive control algorithm that need not be

implemented literally as a collection of artificial neurons. Secondly, these "neural" algorithms

feature learning capability that is distributed down to the smallest computational unit.

Decentralization (distributed learning) imparts the ability to autonomously recover from hardware

failures - including damage to the neural processor itself. A third key feature is that the basic

neural building blocks are hierarchically organized into a set of standardized modules. Analogous

to a "Lego set," modules can be combined to build an enormous variety of systems and permits

complex systems to be built up from simpler components in a transparent way. Finally,

modularity and parallelism yield implementation flexibility. Specialized hardware is not required

for implementation of the Harris ANC architecture° The entire identification or control algorithm

can be distributed among several parallel processors, and hardware suitable for this purpose is

currently available and is being used for engineering development. This means that we can

progress in orderly fashion from the use of existing Integrated Circuits (IC's) to (ultimately)

dedicated neural IC's, thereby building our capabilities gradually and systematically.

While details of the ANC architecture are given in recent papers and reports [42-44], we

briefly review the basic features here. The hierarchy of modular structures is shown in Figure

5.2-2. This hierarchy starts, at the lowest level, with tapped delay lines and neurons with intrinsic

back propagation. These are the same "static" neurons that would be utilized for such

applications as pattern classification and nonlinear mapping. The key to applying such neurons to

dynamic system identification is to organize them into larger building blocks, the dynamic

ganglia. A ganglion is an array of neurons designed to establish temporal ordering within the

network so as to process time histories of network signals. Ganglia are interconnected by bundles

of synapses, called Teopfitz synapses, because the weights form Toeplitz matrices.

The next level in the hierarchy combines ganglia and Toeplitz synapses to form replicator

units. The basic job of a replicator unit is to duplicate the output of a previously unknown

sampled - data dynamic system when both replicator and system are stimulated by the same

training input. Thus the replicator is the basic module for system identification. Several types of

replicator have been developed, each corresponding to a particular model form. The work of

NASA/LaRC personnel in identification methods using systems observer Markov parameters

[45, 46], led to discovery of a new model form for dynamic systems - the ARMarkov model, so-

called because it combines features of impulse response (Markov parameters) with ARMA (Auto

Regressive Moving Average) models. Figure 5.2-3 summarizes the various characteristics of
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Figure 5.2-2 Hierarchy of Modular Neural Structures Progressing from Basic Constituents

to Higher-Level Modules
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Linear Replicators of Various Forms Correspond

to Different model Forms

(x(a+l) =Ax(tc)+Bu(_)+Dw(g) x E IRN; y = Cx + v)

Impulse Response

y(_) = _(_) + _ h_(_ - ._) + _ h_w(_ - ._)
m----1 m----1

(hum and hwm are the "Markov Parameters")

ARMA (Auto Regressive Moving Average)

M M

m=l m=l

(_N contains all contributions from v and w and M rank C > N)

ARMarkov

M

m=l

M+L

+ _ Cmu(_--m); L--O, 1...
m=l

• the first L/:m's are the Markov parameters.

• L -- 0 gives the ARMA model.

® lira _ :Pmy(a- L- m) -- 0 for a stable system.
L ---+oo

m

--, impulse response.

Therefore ARMarkov

Batch ARMarkov

_(K) -- __r(K) q_ Toep[P]_(K -- 1) q- Toep[£_]_(K - 1)

(_(t_) -- (y(K),...,y(K - R q- 1)) T, etc.; Toep[-] denotes a Toeplitz matrix

formed from the vector (.))

Figure 5.2-3 Linear Replicators of Various Forms Correspond to Different Model Forms
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impulse response, ARMA and ARMarkov model forms. ARMarkov - based neural replicators

have been found to offer superior stability and noise tolerance properties in handling IIR systems.

Numerous analytical examples have been produced to demonstrate structural identification

using ARMarkov-based neural replicatorSo Some of these involve the use of simulated

input/output data and others use actual test data. Also, a number of laboratory experiments have

been performed. In some cases a MATLAB simulation was used to implement the neural

algorithm, while in other cases the algorithm was implemented in real time using a DSP card° For

example:

1. Figure 5.2-4 shows a simple beam experiment that produced excellent convergence of

the adaptive model to the actual structural plant in 100 seconds.

2. The neural network system identification capability was also demonstrated on the

Harris Multi-Hex Prototype Experiment (MHPE), which is a four meter Cassagrain

test structure. Figure 5.2-5 show the network converged to the MHPE plant in 125
seconds.

3o Using a Digital Signal Processor (DSP), an Internal Research and Development

0R&D) experiment in active acoustical noise cancellation was completed in which
over 20 dB broadband attenuation was achieved.

Many of these examples involve multiple inputs and outputs and nearly all involve fairly

complex structures with many modes in the frequency band of interest. Also the laboratory

experiments tested the algorithm under such real-world complications as sensor noise and ambient

steady-state disturbances. Summarizing this experience, we can say that reasonably complex

multi-mode systems can be identified with excellent accuracy with convergence times ranging

from a few minutes to fractions of a second (depending on numerous factors, such as system

sample rate, frequency band of interest, etc.).

Returning now to the hierarchy shown in Figure 5.2-2, several replicator units are

combined in order to form the Adaptive Neural Control (ANC) system. An ANC performs on-

line, simultaneous system identification and adaptively optimized control. The most basic ANC

architecture for simultaneously replicating an unknown plant and adapting the controller so as to

match the closed-loop input/output characteristics with a prescribed reference system has two

parts: (1) the closed-loop modeller and (2) the control adaptor. The closed-loop modeller uses

training signals and the plant sensor output to adapt the weights so that the closed-loop is

replicated. After convergence, the modeller output matches the closed-loop system - in effect the

modeller identifies the plant within the closed loop.
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In the control adaptor, there is an internal model of the plant, copied from the plant

modeller. Thus the control adaptor can, in effect, back-propagate error through the plant to the

controller output location. With its internal model of the plant, the adaptor uses the training

signal, its own output and that of the reference system to adjust its weights so that the reference

system is replicated.

Figure 5.2-6 shows an early example of ANC operation. Using a simulation model of the

Mini-MAST facility, an ANC simultaneously performed system identification and control

optimization. In this example, the ANC was required to achieve more than an order of magnitude

closed-loop attenuation of the first bending mode pair of Mini-MAST leaving higher frequency

modes unaltered. This basic control objective was obtained within 7.5 sec. of adaptation and

exact agreement with desired closed-loop response was attained after four minutes of adaptation.

In its detailed operation, the ANC carries out a sequence of steps analogous to the

modelling ID and design refinement steps carried out by human designers within a streamlined

design and test methodology. However, the ANC carries out these steps tremendously faster and

without direct human supervision.

The above example helps to illustrate the potentially enormous savings in time and effort

for development of initial space structure control design. Note that by typical performance

standards set by the human G.I.s on the Mini-MAST testbed during the CSI GI Program Phase 1,

the control design obtained by ANC (Figure 5.2-6)is quite respectable. However, rather than

requiring an elaborate design model together with a man year of effort with •several hours of on-

site testing, ANC obtains its results without prior information on the testbed and within less then

five minutes of unsupervised operation!

The above gives the motivation for demonstrating ANC in the laboratory using the CEM

Phase 2 testbed. The CEM and subsequent results, described below, strongly reinforce our belief

in the effectiveness of the ANC architecture for autonomous spacecraft control.

5.3 Adaptive Neural Control Testing on the Phase 2 CEM Facility

Originally, it was planned to test an ANC controller on-site at the Phase 2 CEM facility in

July 1993. However, the fixed-gain control test scheduling difficulties described in Section 3

precluded an ANC test by the Harris team. Fortunately, because of long term technical

collaboration and frequent informal interchanges in the ANC area, NASA/LaRC personnel were

able to implement and test a basic version of ANC on the Phase 2 CEM in August 1993. Details

of this work are described by Phan in [47] but for completeness, the approach taken and the

experimental results obtained are reviewed here.
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First, a simplified version of the most general ANC model reference adaptive control

scheme was used. Figure 5.3-1 sketches the overall controller architecture. The on-line

controller is an IIR system that is constrained to be the optimal one-step ahead or deadbeat

controller for the identified plant. In other words, the ARMA model coefficients of the controller

are pre-specified as linear functions of the ID model coefficients (and reference model

coefficients) such that when the ID model matches the plant, the controller will drive the plant to

track the reference system within two time steps (allowing for the inherent delays in the system).

This is a simplification of the most general ANC scheme which addresses the adaptive

determination of the optimal L-step-ahead (L > 1) controller. With L=I, the adaptive control

problem devolves into the plant identification problem. As indicated in Figure 5.3-1, only the ID

model is adaptively updated and the controller is essentially copied from the plant model.

A basic aspect of the ANC approach is that the plant is identified using a series parallel

model not a parallel model. The distinctions between these two basic identification schemes is

illustrated in Figure 5.3-2. In the parallel model approach, the ID model retains its recursive

character during training -- i.e. delayed values of the model output, 33, are fed back. This

scheme has serious difficulties connected with convergence of the adaptive process and sensitivity

to initial neural weights. In contrast, during training of the series-parallel model, delayed values

of the actual system output, y, and not the model output, are fed back to the model. Basically, the

series-parallel model can be viewed as a predictor (or estimator): Given the past history of the

system output, the goal of the ID model is to predict the next value of y. With the seres-parallel

approach, it is relatively straightforward, under broad conditions, to prove global convergence of

the adaptive process. Moreover, after training is complete, one can then run the ID model in the

parallel mode, with 33 matching y. Not only does the series-parallel approach have better

convergence properties but, the predictor/estimator character of the model permits the overall

adaptive scheme to tolerate significant nonlinearities in the plant even when linear identification

models are used.

As shown in Figure 5.3-1, the controller parameters are also dependent upon the reference

model parameters. The ANC architecture allows wide latitude for the selection of the reference

model and in the present implementation, the reference model is constructed using the OKID

(Observer/Kalman Filter Identification) algorithm. Basically, the ID model generates an (A, B, C)

realization of the plant. Using this data, OKID finds M such that A+MC is deadbeat of order p.

Finally, from A, B, C and M the ARMA coefficients of a reference model that is deadbeat of order

p are computed. This process gives a reference model that represents a maximally damped

version of the current plant model.

Figure 5.3-3 illustrates the manner in which the Phase 2 CEM facility was used for ANC

testing. Gimbal #1 was used as the disturbance source by performing periodic scanning motion.
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The objective was to maintain fine pointing in Gimbal #2, using the OSS for line-of-sight

performance measurements. The basic ANC algorithm, described above and in Figure 5.3-1 was

implemented on-line in the CEM facility IBM RISC/6000 processor at 60 Hz sampling rate° The

experimental results are due to C. Sandridge and Mo Phan of the CSI Ground Test Method team.

Figure 5.3-4 and 5.3-5 show experimental results for Gimbal #1 commands (the

disturbance) and corresponding OSS-measured line-of-sight errors for Gimbal #2 along two

orthogonal gimbal axes. In a typical test sequence a broadband excitation is first commanded

through Gimbal #1 for 10 seconds. This disturbance serves as the training stimulus for the

identification process. Once the identification is completed a periodic scanning disturbance is

injected into the system through Gimbal #1 for the remaining ten seconds (from time = 25 seconds

to time = 35 seconds). During this ten second scanning disturbance period, the controller is first

turned on for 5 seconds and is then turned off for 5 seconds. The pointing accuracies of Gimbal

#2 along both axes during these events are shown in the lower plots of Figures 5.3-4 and 5.3-5: It

is evident that, in the presence of the scanning disturbance, the controller achieves more than an

order of magnitude improvement in the total rms pointing accuracy relative to the open-loop

performance.

The performance of the identification process is illustrated in Figures 5.3-6 and 5,3=7,

Figure 5.3-6 shows the convergence of the ID model parameters. Evidently, these parameters

have attained their steady-state values during the ten second identification period.

This parameter convergence translates into ever decreasing model prediction error as

illustrated by the prediction error time histories in Figure 5.3-7. With the small parameter errors =

and output prediction errors obtained at the end of the identification phase, the controller is then

equipped to drive the actual plant to track the reference model.

In summary, thanks to close technical interchange and technology transfer th e original

goal for testing ANC was met. The above results demonstrate the effectiveness of a basic ANC

implementation involving a deadbeat constrained controller coupled with a neural identifier.

5.4 Additional ANC Results and Further Directions

Since the CEM testing described above, more experimental results have been obtained and

additional applications areas have been opened up for the ANC architecture. Here, we briefly

sketch these more recent developments and indicate future avenues of progress.

The ANC algorithm tested on the CEM was limited in various respects. In particular, the

scheme used sequential identification and control, employing an externally injected training signal

for adaptation. Also, control was essentially demonstrated for only a relatively narrow frequency

band (centered around the periodic scanning frequency). Various continuing efforts have
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removed these restrictions to provide demonstration of a more complete realization of the ANC

architecture.

In particular, Harris is finishing (at the time of writing) Phase 1 of the Adaptive Neural

Control program for the Air Force Phillips Laboratory° The goals of this two year program are to

design an advanced ANC system, fabricate the ANC hardware in the form of a multi-processor

system and demonstrate the hardware on the Phillips Lab ASTREX testbed. The intermediate

goal of Phase 1 is to demonstrate a basic ANC prototype on the Harris Multi-t-Iex Experiment

(MHPE) test facility. The MHPE is in the form of a 4-meter diameter Cassagrain telescope with

segmented primary and is instrumented with accelerometers and Linear Precision Actuators

(LPACTs) to execute vibration control. The extended ANC algorithm that has been recently

demonstrated on the MHPE using a PC-interfaced DSP uses no externaUy supplied broadband

training signal and executes system identification and control adaptation simultaneously. The

extended algorithm makes use of several accelerometers near the MHPE base as well as

secondary mirror tower accelerometers (used to reconstruct LOS error) in order to secure the

sensory redundancy needed to train the network on the ambient disturbances alone. Moreover,

the experiment was designed to test LOS error suppression over a fairly broad frequency band in

the presence of broadband disturbances. Figure 5.4-1 illustrates the results by showing open-

loop versus closed-loop magnitude plots for the frequency response at one error sensor. Clumps

of resonances near 10 and 15 Hz are reduced to the instrumentation noise floor. The convergence

time of approximately 3 minutes is longer than for the CEM results and the harmonic and multi-

harmonic disturbance results (discussed below) because, in this case, the system must identify the

plant dynamics over the entire frequency band of interest not just near discrete frequencies.

The foregoing experimental activities deal with adaptive control for DoD space

applications, emphasizing broadband disturbances. However, the vast majority of commercial

vibration control applications (and a good many DoD applications as well) involve disturbance

sources (motors, engines, rotors, etc.) that are not broadband but primarily periodic or a sum of

harmonics.

The ANC architecture has been adapted to this simpler set of disturbances, in a manner

that streamlines the algorithm and speeds up convergence. The adaptive neural controller for

discrete spectrum disturbances is able to simultaneously identify all needed transfer functions and

adapt the actuator inputs without interrupting normal operation or injecting an extraneous

broadband test signal (dither). Moreover, the adaptive algorithm is fast: with no previous

identification, completed vibration suppression is achieved in three iterations; once transfer

coefficients are identified, control adjustment can be accomplished in one step. Thus the neural

controller is able to autonomously react to rapid changes in the disturbances or in the system

dynamic characteristics.
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Recent Harris IR&D projects proceeded in two stages, with the following results.

1o Single-Tone (Harmonic) Disturbances: Disturbance sources for the majority of

commercial applications (e.go fan noise, automobile engine noise, aircraft cabin noise,

etc.) are dominated by a fundamental harmonic component. The ANC algorithm for

harmonic noise suppression was implemented with a PC interfaced DSP and

demonstrated on three entirely different laboratory testbeds: An acoustic duct, a test

rig for a vibration isolation proof mass actuator and the MHPE testbed, a precision

optical structure. Live demos are documented in the Harris Corporation video

"Adaptive Noise and Vibration Cancellation Demo"o Starting from a clean slate (no

prior identification data) the system converges in a fraction of a second. The video

shows how ANC can track smooth changes in system dynamics, and can quickly

recover after dramatic, sudden system changes. Moreover, the same algorithm,

without modification, is shown to work on many different types of systems. Over 20

dB noise or vibration reduction is achieved in all cases.

2. Multi-Tone (Several Harmonics) Disturbances: This is a significant feature in most

applications - e.g., nonlinearities in engines and motor mounts product higher

harmonics and sub harmonics in addition to the fundamental tone. The ANC system

for this case combines a fast neural demodulator unit with an array of single tone

cancellors. Multi-tone cancellation is routinely demonstrated in the laboratory. For

example, Figure 5.4-2 shows results for two relatively closely spaced harmonics. Over

30 dB and approximately 40 dB attenuation is achieved on the two tones. Starting

with no prior transfer coefficient information, simultaneous identification and control

are achieved in approximately one second.

Judging from the work to-date, demonstrated ANC capabilities offer great promise in

achieving the kind of autonomy, adaptability and fault tolerance features that are desired for

intelligent commercial and space systems. Much remains to be done to implement practical ANC

systems but the NASA/LaRC and Harris collaboration, facilitated by the GI program has been an

invaluable stimulus to the emergence of this new technology.
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6. PHASE II: VIBRATION ATTENUATION MODULE TEST ON THE CEM

6.1 Introduction

Besides the development of streamlined and automated control design capabilities, one of

the most pressing needs in vibration control is the refinement of self-contained, modular vibration

suppression hardware. A key component in any overall vibration suppression strategy is the

technology to either isolate sensitive equipment from vibrating structure or to isolate structure

from a source of disturbances. Moreover, the vibration isolation strategy lends itself well to self-

contained, modular hardware solutions. This was the inspiration for the invention of the Harris

Active Isolation Fitting (AIF) and the related Vibration Attenuation Module (VAM).

The AIF is a high stiffness, active device for vibration isolation that replaces passive struts

and end fittings in truss structures. The VAM is a six-degree-of-freedom vibration mount built up

from six AIF's and capable of more than 20 dB isolation over a broad frequency band. These two

devices are described in more detail in the next section.

By November 1993 a VAM unit was fabricated and bench-tested within a Harris IR&D

program. The VAM hardware was installed and tested on the new Phase 3 CEM configuration

(reassembled from the Phase 2 configuration in September 1993) in February 1994. Additional

tests of a refined design were carried out under a Cooperative Technology Development

Agreement between Harris and NASA/LaRC with Harris IR&D support. These results are

reported separately. The approach was to replace a SIS support truss (connecting the gimbal

package with the main CEM structure) with the VAM and, by measuring the SIS line-of-sight

error, demonstrate active vibration isolation of the SIS from disturbances injected elsewhere on

the CEM structure. AIF's and VAM's are discussed in Section 6.2. For completeness, Section

6.3 gives a description of the Phase 3 CEM configuration. The VAM test procedures and results

are presented in Section 6.4.

6.2 AIF and VAM Overview

As part of Harris' vibration suppression hardware research efforts, the Active Isolation

Fitting (AIF) has been under development for the past several years on IR&D. The AIF is an

active device for vibration transmission cancellation that would replace ordinary mechanical end

fittings and joints in truss structures for space systems.

To describe the basic capabilities of the AIF, it is important to distinguish between

intrastructural damping approaches to isolation and active isolation. Figure 6.2-1 illustrates this

distinction. We concentrate on the simplest case in which it is desired to modify a uniaxial

member connecting a base body (wherein vibration disturbances originate) to an isolated body so

as to reduce the isolated body's vibration. The intrastructual approach (left hand side of Figure

6-1
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6.2-1), essentially inserts a damper between the two bodies so as to dissipate energy. This can be

implemented passively (e.g., viscoelastic material treatment, fluid dampers, etc.) or actively (e.g.,

a piezoelectric actuator with collocated strain sensor closing a strain rate feedback loop). In any

case, because the isolator member not only damps but also transmits vibrational energy, it is

possible to reduce the resonance peaks of the isolated body response but not appreciably reduce

the broadband, nonresonant response (see PSD sketch on lower left of Figure 6.2-1). This results

in significant performance limitations.

In contrast (see right side of Figure 6.2-1), the Harris AIF uses a mix of inertial and

intrastructual devices and both active and passive control techniques to prevent vibration

transmission into the isolated body. The AIF also implements active intrastructural damping to

dissipate residual vibration energy. As indicated in the lower right of Figure 6.2-1, the effect on

the isolated body is equivalent to reducing the overall disturbance input. Because of this

principle, 20-30 dB of broadband isolation is achieved without exotic hardware. Both resonant

and nonresonant response of the isolated body are suppressed over a broad frequency band.

Moreover, the AIF device does not require detailed design knowledge of the isolated or base

body dynamics nor of the disturbances, as is the case for feedforward cancellation of narrow band

or harmonic disturbances, for example.

Unlike other active isolation approaches (e.g., magnetic suspension/isolation technology),

the AIF is low power, consists of inexpensive off-the shelf components (as illustrated in Figure

6.2-2) and (in contrast to voice coil concepts for intrastructural isolators) fails gracefully by

reverting to a stiff mechanical member upon sensor or actuator failure.

The principal challenge in realizing the performance potential of active isolation, while

achieving the high stiffness and robustness properties noted above for the AIF, was to discover

the correct sensor and actuator types and the right feedback/feedforward control architecture.

There are a multitude of conceptually plausible approaches but most of them fail in practice.

Over four years, Harris' Internal Research and Development (IR&D) efforts performed an

exhaustive search for the most appropriate combination of sensors, actuators and control

architecture. Figure 6.2-2 shows the essential mechanical and control aspects of the AIF design that

finally resulted from this search. The design is a uniaxial connector device having an intrastrutural

actuator (a piezoelectric stack is the preferred embodiment but other types of prime-movers can be

utilized, depending on stroke and bandwidth requirements) and two high bandwidth accelerometers,

one near each end. The control strategy involves the interplay of two single, nonadaptive control

loops. The "bottom" or "inboard" loop involves the base-body end accelerometer and the piezo

stack and provides feedfoward cancellation of the incoming disturbance.
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The "top" or "outboard" loop involves the isolated-body-end accelerometer and the piezo stack to

inertially stabilize the isolated body (or payload) end of the fitting. These two loops work

synergistically to achieve high performance isolation° The inherently stable design depends only on

the AIF dynamic characteristics and needs very little "tuning" to adjust to the detailed dynamic

characteristics of the base body or the isolated body. Moreover, stability and performance are not

sensitive to other AIF's in the system so that more complex isolators can be built up from

independent AIF units.

Furthermore, both control loop compensator gains roll-down below a lower cutoff

frequency. Below this frequency, the AIF behaves as a stiff, passive structural connector.

The AIF has been extensively demonstrated in the laboratory. Figure 6.2-3 shows test

results for two kinds of isolated body (a rigid mass and star-shaped flexible body with complex

modal dynamics in the frequency band of interest). For both cases, we show the magnitude of the

shaker disturbance input to isolated body position transfer functions for open- and closed-loop

operation. 10 to 35 dB attenuation is obtained over 10 to 100 Hz. These results also illustrate

that performance is not sensitive to the dynamic characteristics of the isolated body.

Furthermore, the AIF design can be adapted to a variety of applications. For example

Figure 6.2-4 shows uniaxial test results for a higher bandwidth design. This design achieves 30

dB root mean square (rms) vibration reduction over the 10 to 200 Hz frequency band. Finally,

even more impressive isolation results can be achieved by stacking AIF's into multi-stage

isolators. Test results for a two-stage configuration are shown in Figure 6.2-5. This

configuration attains 42 dB rms attenuation over the 10 to 200 Hz band. We should note that all

of the above isolation results are obtained without reducing the static mechanical stiffness of the

A1F. In other words the AIF does not achieve isolation by virtue of low mechanical stiffness but,

instead, through the use of strictly active control strategies utilizing the piezoelectric actuator and

two accelerometers.

The AIF can be packaged to serve as an end fitting or joint in truss structures° Several

basic AIF modules (each, as in Figure 6.2-2, being uniaxial) are combined to carry out more

complex isolation tasks. For example, multi-degree-of-freedom isolators are built of several AIF's

and passive strut members. The simplest such assembly is a six-member (hexapod) mount, called

the Vibration Attenuation Module (VAM) which provides six degrees of freedom isolation for

sensitive equipment mounted outboard.

The VAM originated as a potential solution to vibration problems studied for the Air

Force Phillips Lab under the Defense Meteorological Satellite Program (DMSP) Vibration

Damping Study conducted in 1992. In a possible system upgrade, it was proposed to add a

vector magnetometer attached via a 45 ft. Astromast boom to the DMSP spacecraft. Various

options for the stabilization of the magnetometer package in the presence of Astromast vibrations

6-5
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excited by spacecraft disturbances were studied. It was desired to devise a self-contained module

requiring no modifications to the Astromast or deployment cannister and, more generally, arrive

at a product that provides vibration protection to a wide variety of flexible appendages or

gimballed sensor packages. Furthermore, the device should protect against both spacecraft

generated and appendage generated (e.g. thermal snap) disturbances. The resulting VAM design,

shown in Figure 6.2-6, has an inboard interface plate and a smaller outboard interface ring

connected together with six nominally identical AIF units each operating independently with its

local sensors and actuator. VAM electronics is housed at the center of the inboard plate° As

shown in Figure 6.2-7 for the DMSP application, the VAM is inserted between the DMSP bus

and the Astromast deployment cannister° Figure 6.2-8 shows various open- and closed-loop

results for the frequency response from a major spacecraft disturbance to the root-sum-square

(rss) magnetometer attitude error. Note that if the VAM were used merely as an active

augmented damper device (see the curve labeled "strain rate feedback only") only the vibration _

mode near 3 Hz and 19 Hz would be significantly attenuated. The attitude excursions below 2 Hz

are unaffected in this case. However, with the full inertial isolation capabilities of the VAM (the

solid curve in Figure 6.2-8), all response below approximately 4 Hz is significantly attenuated.

VAM's were found to have numerous space and ground-based applications involving noise

abatement, vibration control and precision positioning, as Figure 6.2-9 illustrates. In the area of

spacecraft applications, VAM's are particularly useful if one has a sensor payload that must be

tightly coupled to the spacecraft bus (for precision pointing of the instrument via pointing of the

bus) yet sensor precision requires significant isolation of the payload from bus generated

vibration.

Although hexapods composed of AIFs have been successfully tested on other Government

- supplied facilities, the first testing of a VAM as a integrated isolation mount occurred on the

Phase 3 CEM. After a properly sized VAM unit was fabricated on IR&D in November 1993, it

was installed and tested on the Phase 3 CEM in 1994 as part of the CSI GI program. In the next

section we briefly review the Phase 3 CEM configuration then return to consideration of the

VAM design and test results in Section 6.4.

6.3 Phase 3 CEM Testbed Description

In the fall of 1993, the Phase 2 CEM was reconfigured into a new configuration that

exhibits dynamics representative of the EOS AM- 1 spacecraft. This new EOS configuration is

referred to as the Phase 3 CEM testbed.

The Phase 3 CEM model consists of a spacecraft bus structure, flexible appendages,

gimbaled instrument simulators, and dummy masses to simulate both science payloads and

spacecraft subsystems. In order to simulate the free-free behavior of the EOS AM- 1 spacecraft in

6-9
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a 1-g environment, the Phase 3 CEM testbed is suspended using zero-g suspension devices which

approximate free-free boundary conditions. The design requirement was to have all suspension

modes less than or equal to 0.20 Hz to preclude interaction with the flexible-body modes of the

testbed.

The goals of the Phase 3 CEM testbed design were to approximate the overall size, shape,

inertia properties, first structural mode frequency, appendage bending mode dynamic interactions

and weight of a scaled EOS AM-1 spacecraft using existing Phase 2 CEM hardware. New 1/10:1

multiple scaling parameters were developed to define the scaled properties for the Phase 3 CEM

testbed. Using 1/10:1 multiple scaling, design parameters such as mass and stiffness properties

scale as 1/10 of full-scale while geometry (length, area, and volume) and frequency scale as 1.0.

This results in a testbed having the same overall size and structural frequencies as predicted for

the full-scale EOS AM-1 spacecraft but at only 1/10 of the weight, allowing the testbed to be

suspended from the existing Phase 2 CEM suspension system at NASA/LaRC.

The overall Phase 3 CEM testbed design, comprised of truss primary structure, flexible

appendages, payload mass simulators 2-axis pointing gimbals, gas jet thrusters, and associated

electronics boxes is shown in Figures 6.3-1 and 6.3-2. The testbed, shown with its suspension

cables, has three 2-axis gimbals mounted on the underside of the structure which simulate the

VNIR, MISR, and SWIR science payloads located on the nadir (+Z axis) side of the EOS AM- 1

spacecraft. In this orientation, the gimbals are easier to access and have unobstructed fields of

view. Lasers mounted on the 2-axis gimbals in conjunction with advanced optical scoring systems

located on the lab floor are used to conduct pointing experiments. All of the remaining science

payloads are modeled as mass simulators. Some of the mass simulators are mounted on payload

towers (one of two bays of truss) in order to more accurately match the payload center-of-gravity

(CG) locations in the EOS AM-1 model.

Two flexible appendages are required for the Phase 3 CEM testbed. The deployable

articulated mast designed for the CEM Phase 2 testbed is used to simulate the low-frequency

dynamics of the single EOS AM- 1 solar array while a new Phase 3 CEM High Gain Antenna

(HGA) simulator was developed to simulate the low-frequency dynamics of the EOS AM- 1 high

gain antenna. The HGA was designed, fabricated, and tested as part of the Phase 3 CEM design

study. The horizontal orientation of the cantilevered CEM mast requires the use of zero-g

suspension device to off-load its tip weight while the vertically mounted HGA is sufficiently

robust and requires no off-loading.

The Phase 3 CEM testbed primary structure design is based on four truss system

longerons, six truss bulkheads, system diagonals struts, and payload towers. The length of the

Phase 3 CEM primary structure is slightly shorter than the EOS AM-1 bus structure (220" vs.

6-14
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256") while the width (60" vs. 68") and height (80" vs. 78") dimensions of the two structures are

fairly close.

All of the important science payloads and subsystems on the EOS AM-1 spacecraft were

modeled on the Phase 3 CEM testbed using either a discrete rigid mass or a 2-axis gimbal with a

mass payload. A total of 11 out of the 19 payloads simulated in the EOS AM-1 model were

identified as important for the Phase 3 CEM model and therefore were included on the testbed.

The remaining 8 payloads were deleted. The MISR, SWIR and VNIR payloads, each identified as

key pointing payloads, were simulated using 2-axis gimbals in place of rigid masses. Table 6.3-1

contains a list of the 11 payloads included in the Phase 3 CEM model. The mass of the deleted

payloads is offset by the weight increase resulting from using the 2-axis gimbals which are heavier

than the EOS payloads they simulate.

The two flexible appendages used on the Phase 3 CEM testbed to simulate the EOS AM-1

solar array and high gain antenna are the deployable articulated mast originally designed for the

Phase 2 CEM testbed and a newly developed HGA simulator. These two Phase 3 appendages

approximate the low-frequency dynamics of the EOS appendages and simulate the modal

interaction between the appendage and bus structure° The mast is cantilevered horizontally from

a 2-axis gimbal stand mounted on the Y-side of the testbed while the HGA mounts directly to

strut node balls and is cantilevered vertically upward along the Z-axis.

Table 6.3-1 Simulated EOS AM-1 Payloads

PAYLOAD SIMULATOR

DESCRIPTION TYPE

VNIR Gimbal

SCALED EOS

WEIGHT (LBS)

40.98

SWlR Gimbal 29.11

MISR Gimbal 29.77

CERES2

COMM

GNC Bench & Shell

MODIS

MOPITT

PMAD

TIR

Rigid Mass

Rigid Mass

Rigid Mass

Rigid Mass

Rigid Mass

Rigid Mass

Rigid Mass

Rigid Mass

Total:

TR

28,47

26.26

32.18

51.87

45.52

69.16

35.94

72.30

461.56

6-17



A free-free modal analysis of the Phase 3 CEM structure was performed to verify that the

frequency of the first Phase 3 CEM primary structure mode matches the design goal of 23 Hz,

which corresponds to the first primary structure mode of the EOS AM- 1 on-orbit spacecraft. A

description of the first 26 modes resulting from the analysis are shown in Table 6.3-2. The

frequencies of the low-frequency appendage modes are not listed since the free-free analysis is not

intended to quantify the low-frequency appendage dynamics.

Based on the modal analysis, the first system mode of the testbed occurs at the 23.97 Hz

(mode No. 25) and is a torsion mode of the truss primary structure. The modes which occur

prior to the first primary structure system mode are mainly rigid body modes, appendage modes,

and local gimbal payload modes. It should be noted that closed-loop control of the 2-axis gimbals

should eliminate the rotational payload mode at 14 Hz; therefore, this is not considered a true

local payload mode. The first Phase 3 CEM payload modes are the gimbal plunge modes at 22

Hz.

Table 6.3-2 Phase 3 CEM Free-Free Modal Analysis

MODE NO.

1-6

7-10 < 2.00

11

12

13

14

15-17

18

19

2O

21

FREQ (HZ)

0.00

2.87

5.74

9.95

10.05

13.8-14.1

21.48

22.00

22.12

22.48

22 23.14

23 23.41

24 23.50

25 23.97

26 24.88

DESCRIPTION

Rigid Body Modes

HGA & MAST First Bending

HGA First Torsion

Mast First Torsion

Mast Second Bending, Z-axis

Mast Second Bending, X-axis

Gimbal Payload X-axis rotation

Gimbal Payload Plunge

Gimbal Payload Plunge

HGA Second Bending, X-axis

Gimbal Payload Plunge

PMAD/HGA Bending

Second Bending, Y-axis

Towers/PMAD Bending

System 1st Torsion

System Bending/Torsion
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6.4 First VAM Test Session on the Phase 3 CEM

As described above, the Phase 3 CEM features three science instrument simulators

consisting of two-axis gimbal assemblies and arc-second resolution laser optical scoring systems

(OSS) in order to implement precision pointing and jitter experiments. The VAM was installed

underneath the center gimbal as indicated in Figure 6.4-1. The VAM system performance is

based on the LOS error measured by the OSS. To demonstrate the benefits of Harris's VAM the

two remaining gimbals are commanded with uncorelated white noise disturbance commands.

These disturbances demonstrate the interaction between the different instruments. The LOS error

of the open-loop (the VAM is off) is compared to the closed-loop (the VAM is turned on). The

VAM controller tested on the CEM was a generic design that did not use any detailed models of

the Phase 3 CEM. Thus the VAM testing reported here employed only on-site modifications to

adapt the system to the dynamic characteristics of the CEM..

The goals of this initial test session were to integrate the VAM on the experimental facility

and obtain some preliminary test data° Upon VAM installation the loop stability was evaluated.

Each active fitting's stability was evaluated individually and with all of the other active fitting

loops closed. Note that the VAM controller design consists of six independent local loops

designed individually. The controller for each fitting consists of two loops, the outboard loop and

the inboard loop, as described in Section 6.2. The outputs from both of these loops are summed

together to form the control input to the piezo stack, The outboard loop's stability is evaluated by

taking a loop transfer function from piezo command input to the outboard loop controller output.

Similarly the inboard loop stability evaluated from the piezo command input to the output of the

inboard loop controller (this is usually evaluated with the outboard loop closed). After the loops

were modified to obtain the proper stability margins the performance of the VAM system can be

evaluated.

In the above initial check-out testing, it was found that the inboard loops tended to

become saturated by the low frequency, quasi-rigid body modes of the CEM. In consequence, we

elected to carry out the remaining tests using alternative control configurations involving the

operation of subsets of the inboard loops. Control configuration 1 uses only the outboard loops

for every alternate fitting and the inboard loop for the remaining fittings. Configuration 2 uses the

outboard loops only. Finally, configuration 3 is the same as configuration 2 except that a lower

frequency (corner frequency at 10 Hz) high pass filter is used for the velocity estimators.

The performance of the VAM is determined from the amount of LOS error reduction

obtained when the VAM control loops are turned on. The following plots show the performance

improvement for the different control configurations. Figure 6.4-2 shows the LOS X error vs.

LOS Y error for both the open-loop and closed-loop for configuration #1. Figure 6.4-3 shows

similar results for configuration 2. Notice that the configuration 1 response shows a higher
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susceptibility to the low frequency rigid body modes of the CEM. Figure 6.4-4 shows the

corresponding z-axis accelerometer response for configuration 1. The LOS error results for

configuration 3 shown in Figure 6.4-5 indicate only a marginal improvement over configuration 2.

Notice the OSS LOS error is dominated by frequencies less than 10 Hz so approximately a factor

of 4 reduction is obtained with the VAM. This is to be expected because the original design was

intended to attenuate modes from 10 Hz to 100 Hz. Figure 6.4-6 shows the LOS error frequency

response from the disturbance over this frequency band

Figure 6.4-6 indicates substantial isolation performance for the dominant structural modes.

These results were obtained for a generic VAM design that was not refined in any way to account

for the Phase 3 CEM dynamics. The test results do indicate ways to further improve the low

frequency dynamic performance for the CEM. In this instance, the inboard loops were susceptible

to the very low frequency CEM modes because of inadequate low frequency roll-off. This could

not be remedied on-site because of the lack of sufficient states in the analog electronics.

Subsequent activities address these issues through a variety of design refinements, including the

use of a DSP chip to adaptively refine the inboard loop controller in order to optimize its

performance for the structural system being isolated. The refined design testing is being carried

out with financial support through Harris IR&D and in collaboration with NASA/LaRC under a

Memorandum of Agreement (MOA) for a Cooperative Technology Development Program. The

refined test program results obtained under this MOA will be reported separately. This

NASA/Industry collaboration will serve as the vehicle for rapid, cost-effective maturation of a

vibration isolation technology having wide space-borne and ground-based commercial

applications°
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7. CONCLUDING REMARKS

To conclude this report, we wish to offer our heart-felt thanks to the NASA CSI office,

supporting personnel at LaRC and MSFC as well as engineering personnel of Control Dynamics

Corporation and all others concerned for making the experimental activities reviewed here a

technically rewarding experience.

The variety and challenge of the testbeds and the rigor of this independently refereed test

program helped us develop a broad-based, well-balanced technology° Even the "glitches" that

inevitably occurred in such a complex undertaking were valuable in that they simulated the non-

idealities of realistic spacecraft control design tasks. The challenges offered by this experimental

program encouraged the Harris Guest Investigator team to achieve greater resourcefulness and

efficiency as evidenced by:

1. The pioneering application of automated system ID and the integration of this

capability with control design.

2. The development of streamlined, accelerated controls implementation and test

processes.

3. The inauguration of initial development leading to autonomous spacecraft control with

revolutionary implications for future control theory and practice.

4. Test, demonstration of new, modular, high impact controls products such as the

Vibration Attenuation Module.

When Phase 1 of the Guest Investigator Program began Precision Space Structures

control was still a "theoretical sand-box". Now, thanks to the GI Program we are much closer to

making this a field of professional competence backed by reliable, effective tools. Finally, by

drastically reducing the cost of applying these tools we have helped make the field economically

viable. This, together with the recent modular/autonomous hardware developments bring us to

the threshold of wide-ranging markets for this technology.
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