Academia.eduAcademia.edu
Heredity 82 (1999) 479±487 Received 23 January 1998, accepted 7 January 1999 Population structure and genetic variation of European wild rabbits (Oryctolagus cuniculus) in East Anglia ALISON K. SURRIDGE*, DIANA J. BELL, KAMAL M. IBRAHIM & GODFREY M. HEWITT School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K. The European wild rabbit (Oryctolagus cuniculus) is an introduced species in Britain, and populations have been profoundly in¯uenced by both man and disease. In stable environmental conditions, distinct social behaviour is observed, and this social structure leads to signi®cant genetic structuring at the intrapopulation level. In this study, European wild rabbits were sampled from 17 sites across the East Anglian region of Britain and genotyped with nine microsatellite loci. Genotypical proportions deviated signi®cantly from Hardy±Weinberg equilibrium, re¯ecting a degree of population subdivision and non-random mating. Several estimates of measures of population genetic structure revealed that populations are genetically distinct and have small e€ective population sizes. These distinctive properties are seen to be the combined e€ects of the social structure and random drift acting on bottlenecked populations after myxomatosis. It is concluded that the genetic structure seen in rabbit populations today is unlikely to re¯ect historical structuring present before myxomatosis, but that it results from recent events. Keywords: e€ective population size, European wild rabbit, gene ¯ow, microsatellites, Oryctolagus cuniculus, population bottleneck. matosis is still thought to have a considerable impact on population sizes. Within the East Anglian region of Britain, the history of the establishment and distribution of rabbit warrens is well documented. Before the sixteenth century, rabbit warrening was largely restricted to areas of light sandy soil (Bailey, 1991). Many areas of forest and heavy soil were inaccessible to rabbits until as late as the eighteenth or nineteenth centuries when land use began to change, and populations of wild rabbits became established. The European wild rabbit is a burrowing animal that has evolved coloniality, the bene®ts of which include increased protection from predators, shelter and availability of nesting sites provided by the group warren, along with desirable changes in the quality and quantity of food produced by group foraging e€ects (Bell, 1983). Within this system, small, stable breeding groups are formed, and linear dominance hierarchies are observed in both males and females, with dominant individuals generally exhibiting higher reproductive success (Bell, 1983). Natal dispersal is sex biased; males disperse and females tend to remain within their breeding group (Webb et al., 1995). This social structuring within a population of European wild rabbits is seen to result in Introduction The European wild rabbit (Oryctolagus cuniculus) originated in southern Spain and north Africa and now has a widespread global distribution, primarily because of the in¯uence of man. It was introduced into Britain in the eleventh century by the Normans, who kept captive populations of rabbits bred as a food and fur resource. Wild populations were rare owing to lack of a suitable habitat and an abundance of predators. In the eighteenth century, the growing of winter crops combined with an increased interest in game resulted in food resources becoming available and in the control of predators. This meant that populations could survive and increase in the wild (Sheail, 1971). Within 200 years, populations had expanded over most of the UK. In 1952, the myxoma virus was introduced to France in an attempt to control rapidly increasing populations and, by 1953, the virus had spread to Britain where it caused an initial mortality of up to 99.9%. Although rabbits have developed some immunity to the disease, myxo- *Correspondence. E-mail: a.surridge@uea.ac.uk Ó 1999 The Genetical Society of Great Britain. 479 480 A. K. SURRIDGE ET AL. higher relatedness among females within a social group than among males (Surridge et al., 1999). An overall reduction in gene ¯ow is observed, leading to genetic structuring of the population, with breeding groups constituting genetically isolated units. The ®ne-scale genetic structuring resulting from social behaviour may be expected to have a signi®cant impact on the larger scale population structure of the European wild rabbit. This study investigates the genetic structure of rabbit populations in the East Anglian region of Britain using nine polymorphic microsatellite loci, with the aims of examining: (i) the wider scale in¯uences of social behaviour; (ii) the historical e€ects of founder events as populations expanded across the East Anglian region; and (iii) the in¯uence of the myxomatosis bottleneck on population genetic structure. Populations from areas where rabbits were established initially were sampled together with areas where rabbit populations would have become established around 700 years later. The in¯uence of population bottlenecks and founder e€ects was assessed by estimating genetic diversity within these di€erent populations. Materials and methods Sampling Seventeen sites across East Anglia were sampled; between 20 and 55 individual rabbits were collected from each site. The approximate defended home territory of a rabbit is 0.25 ha; samples for this study were collected from areas of up to several hundred hectares. The distribution of sample sites across East Anglia is given in Fig. 1. DNA was extracted from small pieces of ear tissue taken from rabbits shot as part of routine control procedures. Ear tissue was preserved in a highsalt tissue preservation bu€er. Genetic analysis DNA extraction was performed using standard techniques (overnight cell lysis using proteinase K, SDS and EDTA; protein puri®cation using chloroform followed by isopropanol precipitation) and polymerase chain reaction (PCR) ampli®cation and genotyping of microsatellite loci performed as described previously for the nine loci: sol03, sol08, sol30, sol33, sol44, sat5, sat7, sat8 and sat12 (Surridge et al., 1997). Statistical analysis First, we estimated the genetic diversity within the populations sampled using the Shannon±Weaver diver- Fig. 1 Distribution of sample sites of European wild rabbit populations in East Anglia. Recent and ancient sites are marked by closed and open circles, respectively. sity index (Shannon & Weaver, 1964). This index integrates two aspects of diversity, variant richness as well as the frequency of each variant, i.e. the number of alleles and their frequencies. ForP an in®nite population, diversity is estimated by H¢ ˆ ± pilnpi, where pi is the frequency of variant i, in this case allele i. The bias in H¢ resulting from ®nite sample size is small and can be ignored in most cases (Peet, 1974). H¢ is maximized when each individual sampled carries unique alleles; thus, maximum H¢ is given by lnn, where n is the total number of alleles sampled. Relative diversity was calculated as the ratio of H¢ to maximum H¢. These diversity indices should reveal the e€ects of past bottlenecks and/or the founding of populations from a small number. Secondly, we tested the genotypes at each locus for each population for deviation from the expected Hardy± Weinberg ratios using the software POPGENE (Yeh et al., 1996), which performs both chi-squared and likelihood ratio tests of statistical signi®cance. Rabbits show a high degree of social structure and, therefore, it is unlikely that the genotypical proportions in the sampled populations will conform to Hardy±Weinberg expectations. However, assuming that any heterozygote de®cit found is caused entirely by the e€ects of null alleles, it is possible to calculate the frequency of these null alleles from the expected (He) and observed (Ho) heterozygosity values. This can be given by: r ˆ He ÿ Ho = He ‡ Ho † Chakraborty et al:; 1992† 1† Ó The Genetical Society of Great Britain, Heredity, 82, 479±487. 481 POPULATION STRUCTURE OF EUROPEAN WILD RABBITS and r ˆ He ÿ Ho = 1 ‡ He † Brookfield, 1996†; 2† where r is the frequency of null alleles. Thirdly, Wright's (1951) FST, FIT and FIS (based on an in®nite allele model of mutation) were estimated in the form of h, F and f, the sample-based, respective estimators of these parameters proposed by Weir & Cockerham (1984). These were computed using FSTAT (Goudet, 1995). Because there is no general consensus over which model of mutation is best applied to microsatellite data (Di Rienzo et al., 1994), we also obtained estimates of Slatkin's (1995) RST (based on a stepwise mutation model) in the form of /ST values calculated using AMOVA (Michalakis & Excoer, 1996). Pairwise genetic distances (in the form of h) were plotted against pairwise geographical distances in kilometres. A Mantel test (Mantel, 1967) was used to test for a signi®cant relationship. Also estimated were Nm or gene ¯ow in the form of number of migrants exchanged per generation, and Ne, the e€ective population size. The relationship Nm ˆ (1/ 4FST) ± 0.25 (Wright, 1951) was used to estimate the number of migrants per generation from h, the estimator of FST (where equilibrium conditions in terms of the e€ective size of a population over generations and the balance between drift and migration are assumed). Slatkin's (1985) method of estimating Nm, based on the distribution of rare or private alleles, was calculated (with re®nements) in GENEPOP (Raymond & Rousset, 1995). Similarly, where steady state, neutrality and an in®nite allele model are assumed, Ewens (1972) has derived the expectation of the mean number of di€erent alleles per locus in a sample as a function of the rate of mutation l, sample size n and the e€ective population size Ne. Thus, for a given sample size and observed number of alleles, the value of 4Nel was obtained, and Ne was calculated assuming a mutation rate of 10±3, which lies between reported rates for microsatellites in rodents and humans (Dallas, 1992; Weber & Wong, 1993). The formulae for Ne derived by Crow & Kimura (1970) and Ohta & Kimura (1973) (where Ne is a function of l and the observed heterozygosities for the in®nite and single-step stepwise mutation models respectively) were used to obtain Ne values for comparative purposes. Results Microsatellite loci All the microsatellite loci showed polymorphism, having between eight and 17 alleles and heterozygosities ranging from 0.24 to 0.72 (Table 1). The mean number of alleles per locus ranged from 3.45 to 7.78 in the 17 Ó The Genetical Society of Great Britain, Heredity, 82, 479±487. Table 1 Number of alleles, observed and expected heterozygosities for the nine microsatellite loci of European wild rabbits Locus No. of alleles Ho He r1 r2 sol03 sol08 sol30 sol33 sol44 sat5 sat7 sat8 sat12 17 11 15 16 15 17 16 8 9 0.627 0.573 0.619 0.581 0.241 0.523 0.471 0.326 0.718 0.891 0.818 0.821 0.855 0.729 0.694 0.827 0.404 0.748 0.174 0.176 0.140 0.191 0.503 0.141 0.274 0.107 0.020 0.140 0.135 0.111 0.148 0.282 0.101 0.195 0.056 0.017 Also given are frequencies of null alleles (r) expected under departure from Hardy±Weinberg equilibrium using eqns (1) and (2) in the text. populations. Loci showing the greatest number of alleles tended to be interrupted repeats, for example sol03 (17 alleles), sat5 (17 alleles), sol33 (16 alleles) and sol30 (15 alleles). However, there appeared to be no clear correlation between number of repeats and number of alleles in our sample of microsatellite loci. Population-speci®c allele frequencies for all loci are given in the Appendix. Departures from Hardy±Weinberg equilibrium The social structure of the European wild rabbit prevents random mating. Re¯ecting this, all loci were seen to deviate signi®cantly from Hardy±Weinberg equilibrium using both chi-squared and likelihood ratio tests (P < 0.001). Observed and expected heterozygosities are given in Table 1, together with the numbers of alleles observed per locus. All loci except sat12 showed a signi®cant heterozygote de®cit. Possible reasons for this de®cit, apart from population subdivision and assortative mating, include selection against heterozygotes and null alleles. Estimates of r for each locus are given in Table 1 (r1 from eqn 1, r2 from eqn 2). These frequencies are high for some loci, e.g. sol44 and sat7. The frequency of blank genotypes in the data set (possible null±null homozygote genotypes) ranged from 0.022 (for sat12) to 0.052 (for sat7). Population differentiation and gene ¯ow The estimators of population di€erentiation based on the in®nite alleles and stepwise mutation models showed a high degree of population di€erentiation (h ˆ 0.150, P < 0.001; /ST ˆ 0.198, P < 0.001). Single-locus estimates of F, f, h and /ST are given in Table 2. All loci show values of h and /ST signi®cantly greater than zero (P < 0.005). Estimates of gene ¯ow, Nm, calculated from h and /ST are 1.42 and 1.01 respectively. Using the 482 A. K. SURRIDGE ET AL. Table 2 Single-locus estimates of F, f, h and /ST for the nine microsatellite loci in European wild rabbits Locus F f h /ST sol03 sol08 sol30 sol33 sol44 sat5 sat7 sat8 sat12 All loci 0.303*** 0.304*** 0.252*** 0.327*** 0.684*** 0.258*** 0.436*** 0.199*** 0.047* 0.319*** 0.199*** 0.212*** 0.157*** 0.225*** 0.507*** 0.085*** 0.348*** 0.126*** )0.036 0.199*** 0.130*** 0.116*** 0.113*** 0.132*** 0.359*** 0.189*** 0.135*** 0.083*** 0.080*** 0.150*** 0.198*** 0.247*** 0.169*** 0.396*** 0.314*** 0.061*** 0.424*** 0.076** 0.171*** 0.198*** *P < 0.05, **P < 0.005, ***P < 0.001. private alleles method, a higher value of 2.82 individuals per generation was obtained. Plots of pairwise h against geographical distance (Fig. 2) showed no apparent correlation between genetic and geographical distance (Mantel test, P > 0.05). Effective population size For a value of l ˆ 10±3, we obtain estimates of e€ective population size of 541 using Ewens' formula, where the number of alleles per locus was averaged over loci and over populations. The methods based on heterozygosity values gave estimates of 253 and 380 for the in®nite alleles and stepwise mutation models, respectively, where heterozygosities were averaged over loci and over populations. Fig. 2 Plot of pairwise geographical distance (km) against pairwise genetic distance (h) for the 17 populations of European wild rabbit. Diversity within populations The Shannon±Weaver diversity index obtained for populations ranged from 0.92 to 1.79. Relative diversity ranged from 0.082 to 0.136. Of the populations sampled, 10 could be considered `ancient' populations, i.e. rabbit populations were known from historical records to be present in those areas before the sixteenth century (M. Bailey, personal communication), and the remaining seven were sampled from areas probably colonized by rabbits from the eighteenth century onwards, termed `recent' populations. As rabbits spread out from existing populations into previously unoccupied habitats in the eighteenth or nineteenth centuries, we might expect to see a loss of genetic diversity resulting from a small number of initial founders. Mean diversity for recent populations ˆ 0.112 (range 0.082±0.125) and, for ancient populations, mean diversity ˆ 0.114 (range 0.096± 0.136). There is no signi®cant di€erence between these two sets of values. These reveal that there is no relationship between the site of the population (ancient site or recent site) and the diversity found within the population. Hence, the data show no evidence for founder e€ects in populations occupying areas radiating out from sites supporting ancient populations. Discussion The European wild rabbit exhibits a high degree of nonrandom mating and social structuring, and a consequence of this is a high degree of genetic structuring within a population (Surridge et al., 1999). When dealing with sampled populations, therefore, it must be considered that Hardy±Weinberg assumptions do not apply, and that samples are being taken across genetically isolated breeding subunits. This is re¯ected in the data presented here, a marked e€ect being a large deviation from expected Hardy±Weinberg genotype frequencies in the form of a heterozygote de®cit. Thus, the combined e€ect of sampling across many breeding subunits, within which individuals are known to mate assortatively, is the major cause of the observed heterozygote de®cit (Surridge et al., 1999). Null alleles could also be contributing to the de®cit observed, but the frequency at which they occur remains uncertain. A high degree of population di€erentiation is observed between the 17 populations, indicating that the populations are substantially isolated. Because of the low levels of gene ¯ow, there appears to be no signi®cant trend of isolation by distance. A wide spread of pairwise genetic distances is observed, which cannot be correlated with geographical distance. Ó The Genetical Society of Great Britain, Heredity, 82, 479±487. POPULATION STRUCTURE OF EUROPEAN WILD RABBITS These data are in good agreement with the results of previous studies on genetic structure of geographical populations of European wild rabbits. Richardson et al. (1980) found that there was signi®cant variation in local populations of rabbits in New South Wales using allozyme data, but this variation showed no clear pattern and was attributed to drift because of small e€ective population sizes. In contrast, rabbit populations in an arid region of Queensland show no genetic di€erentiation and high levels of gene ¯ow over 1600 km2. Moving into a semiarid ecosystem, populations become more structured (Fuller et al., 1997). This di€erence can be explained by di€erences in ecology and demography. It has been shown that the genetic structure of eastern cottontail populations (Sylvilagus ¯oridanus) is not solely a result of social structure (Scribner & Chesser, 1993). In fact, it is the in¯uence of environmental parameters that determine the social behaviour, which, in turn, in¯uences the genetic structure. Gene ¯ow between populations may be increased in three ways: population expansion in favourable conditions; successful dispersal into recently occupied areas after a population crash (Daly 1979); and mass emigration when resource shortage develops. So, we may suggest that, in favourable, more stable conditions such as those experienced in Britain, strict, stable social organization develops, leading to reduced gene ¯ow and small e€ective population sizes. If e€ective population size is small, this is expected to lead to changes in the genetic structure of a population because of random drift and, hence, distinct population di€erentiation. Estimates of e€ective population size corresponded well with others obtained previously for the European wild rabbit. From ecological studies, a ®gure of 120 has been obtained (Daly, 1979) and, using an isolation by distance calculation from distance moved between birth and breeding, Richardson (1981) estimated an e€ective population size of 170. Over non-arid regions of Australia, e€ective population size has been calculated at between 220 and 340 using coalescence theory (Zenger, 1996), showing close agreement with our estimates of 253±380 based on heterozygosity under an in®nite alleles model and a stepwise mutation model. However, caution must be applied when interpreting estimates of e€ective population sizes obtained using models that have certain assumptions, such as ®xed population size and random mating, which are unrealistic in a species displaying pronounced social behaviour such as the European wild rabbit. Our data show no evidence for founder e€ects reducing genetic variation within populations as rabbits expanded into unoccupied habitats. A possible reason Ó The Genetical Society of Great Britain, Heredity, 82, 479±487. 483 for this is the e€ects of the population bottleneck experienced as rabbit populations were exposed to myxomatosis later on in their history. The resulting survivors in a population would have undergone loss or ®xation of di€erent alleles because of drift, leading to genetic di€erentiation of geographically isolated populations and the obscuring of much genetic structure induced by past events. It is often assumed that, when a population goes through a severe bottleneck, random genetic drift will induce a massive loss of genetic variability. Despite the extremely large mortality induced by myxomatosis, much variation is still observed within rabbit populations, with average heterozygosity being 0.520. The reduction in heterozygosity induced by a population bottleneck depends not only on bottleneck size but also on the rate of population growth after the bottleneck, with rapid growth limiting the severe e€ects of drift to a few generations. However, the loss of alleles is largely dependent on bottleneck size only (Nei et al., 1975), because the bottleneck tends to eliminate many lowfrequency alleles from the population. It is proposed that the rabbit's short generation time, together with high fecundity leading to a rapid population growth rate, could account for the degree of heterozygosity observed in present populations, despite the severity of the bottleneck. On the other hand, despite the degree of variation still observed in European wild rabbit populations, there can be no doubt that a disease such as myxomatosis resulting in the death of 99.9% of a population must have a signi®cant e€ect on the genetic structure of that population. To conclude, the present-day distribution and abundance of the European wild rabbit has been greatly modi®ed by both man and disease. The genetic structure of populations re¯ects the social structure of the rabbit and is in¯uenced by genetic drift. Hence, any genetic structuring present in European wild rabbit populations before the myxomatosis outbreak, for example in¯uences of man, such as introductions or translocations, or those induced by natural colonization of populations into unoccupied habitats, is not evident in present populations. Acknowledgements We wish to thank D. Bullock, N. Mackinnon, P. Scott, K. Turner and The National Trust, Harvey's Game Butcher, A. S. Kerslake, J. Farmer, J. Rudderham and M. Wright. We also thank L. Excoer for the program used to calculate Ewens' theta. This work was supported by grants from the BBSRC (D. J. Bell and G. M. Hewitt) and the Leverhulme Trust (K. M. Ibrahim). 484 A. K. SURRIDGE ET AL. References BAILEY, M. 1991. The rabbit and the Mediaeval East Anglian economy. Agric. Hist. Rev., 36, 1±20. BELL, D. J. 1983. Mate choice in the European rabbit. In: Bateson, P. P. (ed.) Mate Choice, pp. 211±223. Cambridge University Press, Cambridge. BROOKFIELD, J. F. Y. 1996. A. simple new method for estimating null allele frequency from heterozygote de®ciency. Mol. Ecol., 5, 453±455. CHAKRABORTY, R., DE ANDRADE, M., DAIGER, S. P. AND BUDOWLE, B. 1992. Apparent heterozygote de®ciencies observed in DNA typing data and their implications in forensic applications. Ann. Hum. Genet., 56, 45±57. CROW, J. F. AND KIMURA, M. 1970. An Introduction to Population Genetics Theory. Harper and Row, New York. DALLAS, J. F. 1992. Estimation of microsatellite mutation rates in recombinant strains of mouse. Mamm. Genome, 3, 452±456. DALY, J. 1979. The Ecological Genetics of the European Wild Rabbit (Oryctolagus cuniculus (L.)) in Australia. Ph.D. Thesis, Australian National University. DI RIENZO, A., PETERSON, A. C., GARZA, J. C., VALDES, A. M., SLATKIN, M. AND FREIMER, N. B. 1994. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. U.S.A., 91, 3166±3170. EWENS, W. J. 1972. The sampling theory of selectively neutral alleles. Theor. Pop. Biol., 3, 87±112. FULLER, S. J., WILSON, J. C. AND MATHER, P. B. 1997. Patterns of di€erentiation among wild rabbit populations Oryctolagus cuniculus L. in arid and semiarid ecosystems of north-eastern Australia. Mol. Ecol., 6, 145±153. GOUDET, J. 1995. FSTAT, version 1.2: a computer program to calculate F-statistics. J. Hered., 86, 485±486. MANTEL, N. 1967. The detection of disease clustering and a generalised regression approach. Cancer Res., 27, 209±220. MICHALAKIS, Y. AND EXCOFFIER, L. 1996. A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics, 142, 1061±1064. NEI, M., MARUYAMA, T. AND CHAKRABORTY, R. 1975. The bottleneck e€ect and genetic variability in populations. Evolution, 29, 1±10. OHTA, T. AND KIMURA, M. 1973. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a ®nite population. Genet. Res., 82, 201± 204. PEET, R. K. 1974. The measurement of species diversity. Ann. Rev. Ecol. Syst., 5, 285±307. RAYMOND, M. AND ROUSSET, F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered., 86, 248±249. RICHARDSON, B. J. 1981. The genetic structure of rabbit populations. In: Myers, K. and MacInnes, C. D. (eds) Proceedings of the World Lagomorph Conference, pp. 37±52. University of Guelph, Guelph. RICHARDSON, B. J., ROGERS, P. M. AND HEWITT, G. M. 1980. Ecological genetics of the wild rabbit in Australia. II. Protein variation in British, French and Australian rabbits and the geographical distribution of the variation in Australia. Aust. J. Biol. Sci., 33, 371±383. SCRIBNER, K. T. AND CHESSER, R. K. 1993. Environmental and demographic correlates of spatial and seasonal genetic structure in the eastern cottontail (Sylvilagus ¯oridanus). J. Mammal., 74, 1026±1044. SHANNON, C. E. AND WEAVER, W. 1964. The Mathematical Theory of Communication. University of Illinois Press, Urbana. SHEAIL, J. 1971. Rabbits and their History. David and Charles, Newton Abbott. SLATKIN, M. 1985. Rare alleles as indicators of gene ¯ow. Evolution, 39, 53±65. SLATKIN, M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457±462. SURRIDGE, A. K., BELL, D. J., RICO, C. AND HEWITT, G. M. 1997. Polymorphic microsatellite loci in the European wild rabbit (Oryctolagus cuniculus) are also ampli®ed in other lagomorph species. Anim. Genet., 28, 302±305. SURRIDGE, A. K., IBRAHIM, K. M., BELL, D. J., WEBB, N. J., RICO, C. and HEWITT, G. M. 1999. Fine-scale genetic structuring in a natural population of European wild rabbits (Oryctolagus cuniculus). Mol. Ecol., 8, 299±307. WEBB, N. J., IBRAHIM, K., BELL, D. J. AND HEWITT, G. M. 1995. Natal dispersal and genetic structure in a population of the European wild rabbit (Oryctolagus cuniculus). Mol. Ecol., 4, 239±247. WEBER, J. L. AND WONG, C. 1993. Mutation of human short tandem repeats. Hum. Mol. Genet., 2, 1123±1128. WEIR, B. S. AND COCKERHAM, C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358± 1370. WRIGHT, S. 1951. The genetical structure of populations. Ann. Eugen., 15, 323±354. YEH, F. C., RONGCAI, Y., MAO, J., ZHIHONG, Y. AND BOYLE, T. J. B. 1996. POPGENE, the Microsoft Windows-based user-friendly software for population genetics analysis of co-dominant and dominant markers and quantitative traits. Department of Natural Resources, University of Alberta, Alberta, Canada. ZENGER, K. 1996. The Genetic Variation and Evolution of the Mitochondrial DNA Non-Coding Region in Australian Wild Rabbit Populations (Oryctolagus cuniculus (L.)). M.Sc. Thesis, University of Western Sydney. Ó The Genetical Society of Great Britain, Heredity, 82, 479±487. POPULATION STRUCTURE OF EUROPEAN WILD RABBITS 485 Appendix Allele frequencies at nine microsatellite loci for the 17 European wild rabbit populations Population Allele Locus (bp) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 sol30 137 143 145 147 149 151 153 155 157 159 161 163 165 169 171 0.000 0.000 0.474 0.205 0.000 0.000 0.000 0.000 0.051 0.000 0.244 0.000 0.026 0.000 0.000 0.000 0.015 0.324 0.294 0.000 0.000 0.000 0.000 0.044 0.029 0.162 0.059 0.074 0.000 0.000 0.028 0.222 0.194 0.037 0.000 0.000 0.000 0.028 0.157 0.000 0.333 0.000 0.000 0.000 0.000 0.000 0.051 0.296 0.082 0.031 0.010 0.000 0.082 0.031 0.092 0.276 0.041 0.000 0.010 0.000 0.000 0.052 0.034 0.397 0.017 0.000 0.000 0.000 0.034 0.103 0.069 0.293 0.000 0.000 0.000 0.000 0.000 0.167 0.222 0.000 0.000 0.000 0.000 0.000 0.000 0.222 0.389 0.000 0.000 0.000 0.000 0.014 0.176 0.284 0.000 0.000 0.000 0.014 0.068 0.054 0.392 0.000 0.000 0.000 0.000 0.000 0.000 0.081 0.468 0.000 0.000 0.000 0.000 0.016 0.048 0.387 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.304 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.022 0.152 0.022 0.000 0.000 0.000 0.017 0.200 0.000 0.000 0.000 0.000 0.083 0.000 0.650 0.017 0.033 0.000 0.000 0.000 0.000 0.232 0.268 0.036 0.000 0.000 0.018 0.161 0.018 0.268 0.000 0.000 0.000 0.000 0.000 0.000 0.184 0.342 0.026 0.000 0.000 0.000 0.158 0.000 0.289 0.000 0.000 0.000 0.000 0.000 0.045 0.227 0.091 0.023 0.000 0.000 0.000 0.068 0.000 0.545 0.000 0.000 0.000 0.000 0.000 0.381 0.190 0.000 0.000 0.000 0.000 0.024 0.000 0.000 0.405 0.000 0.000 0.000 0.000 0.000 0.238 0.262 0.000 0.000 0.000 0.000 0.071 0.095 0.000 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.090 0.205 0.385 0.013 0.026 0.000 0.013 0.064 0.000 0.192 0.000 0.000 0.013 0.000 0.112 0.375 0.087 0.013 0.000 0.013 0.013 0.050 0.213 0.050 0.075 0.000 0.000 0.000 sol03 218 219 221 223 225 227 229 231 233 235 237 239 241 243 245 247 257 0.000 0.000 0.000 0.053 0.039 0.289 0.184 0.039 0.000 0.000 0.013 0.053 0.026 0.211 0.013 0.079 0.000 0.000 0.000 0.000 0.063 0.016 0.125 0.266 0.000 0.000 0.000 0.031 0.078 0.094 0.156 0.047 0.125 0.000 0.000 0.000 0.000 0.000 0.067 0.240 0.096 0.000 0.000 0.000 0.010 0.029 0.154 0.106 0.288 0.000 0.010 0.009 0.000 0.009 0.019 0.142 0.321 0.047 0.009 0.000 0.000 0.094 0.000 0.292 0.047 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.328 0.086 0.017 0.017 0.000 0.017 0.052 0.086 0.379 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.278 0.111 0.000 0.000 0.000 0.000 0.000 0.000 0.611 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.063 0.250 0.125 0.025 0.013 0.000 0.050 0.112 0.125 0.225 0.000 0.000 0.000 0.161 0.065 0.468 0.000 0.000 0.000 0.016 0.000 0.242 0.000 0.032 0.000 0.016 0.000 0.000 0.000 0.000 0.000 0.022 0.348 0.000 0.000 0.022 0.022 0.000 0.413 0.087 0.043 0.000 0.043 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.067 0.000 0.017 0.133 0.000 0.017 0.117 0.000 0.067 0.000 0.517 0.017 0.050 0.000 0.000 0.000 0.196 0.321 0.000 0.000 0.000 0.000 0.161 0.143 0.179 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.175 0.000 0.075 0.275 0.000 0.100 0.075 0.000 0.050 0.025 0.150 0.000 0.050 0.000 0.000 0.000 0.000 0.024 0.024 0.214 0.143 0.000 0.000 0.000 0.024 0.024 0.048 0.286 0.190 0.024 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.250 0.000 0.000 0.000 0.000 0.050 0.000 0.000 0.425 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.237 0.184 0.000 0.000 0.000 0.000 0.079 0.079 0.053 0.316 0.053 0.000 0.000 0.000 0.000 0.000 0.363 0.438 0.000 0.000 0.000 0.000 0.025 0.025 0.150 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.200 0.237 0.000 0.000 0.000 0.000 0.038 0.000 0.213 0.188 0.112 0.000 0.000 sol44 178 192 194 196 198 200 202 204 206 208 210 212 218 220 222 0.013 0.000 0.000 0.000 0.013 0.013 0.090 0.051 0.231 0.590 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.088 0.912 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.009 0.660 0.217 0.104 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.694 0.296 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.034 0.966 0.000 0.000 0.000 0.000 0.000 0.000 0.056 0.000 0.000 0.000 0.000 0.000 0.000 0.222 0.722 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.141 0.013 0.218 0.000 0.192 0.051 0.359 0.026 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.226 0.081 0.677 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.083 0.063 0.792 0.042 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.150 0.033 0.550 0.267 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.074 0.204 0.185 0.426 0.093 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.175 0.750 0.000 0.075 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.432 0.545 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.045 0.068 0.523 0.000 0.000 0.000 0.000 0.364 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.105 0.237 0.368 0.053 0.000 0.000 0.000 0.211 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.782 0.179 0.000 0.013 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.053 0.816 0.079 0.039 0.000 0.000 0.013 0.000 0.000 Ó The Genetical Society of Great Britain, Heredity, 82, 479±487. 486 A. K. SURRIDGE ET AL. Appendix (contd.) Population Allele Locus (bp) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 sol08 104 106 108 110 112 114 116 118 120 122 124 0.000 0.026 0.679 0.000 0.013 0.064 0.192 0.000 0.013 0.013 0.000 0.103 0.074 0.426 0.015 0.000 0.250 0.029 0.000 0.103 0.000 0.000 0.010 0.082 0.337 0.010 0.031 0.051 0.276 0.061 0.061 0.082 0.000 0.000 0.019 0.173 0.019 0.048 0.087 0.269 0.048 0.308 0.029 0.000 0.036 0.250 0.000 0.000 0.000 0.357 0.357 0.000 0.000 0.000 0.000 0.000 0.389 0.056 0.000 0.000 0.333 0.222 0.000 0.000 0.000 0.000 0.066 0.118 0.487 0.000 0.158 0.026 0.132 0.013 0.000 0.000 0.000 0.113 0.065 0.452 0.081 0.177 0.016 0.065 0.032 0.000 0.000 0.000 0.023 0.273 0.341 0.000 0.000 0.000 0.364 0.000 0.000 0.000 0.000 0.017 0.000 0.250 0.000 0.033 0.000 0.300 0.067 0.333 0.000 0.000 0.308 0.308 0.269 0.077 0.019 0.019 0.000 0.000 0.000 0.000 0.000 0.026 0.553 0.132 0.158 0.000 0.105 0.000 0.026 0.000 0.000 0.000 0.190 0.357 0.119 0.167 0.095 0.071 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.425 0.000 0.275 0.000 0.075 0.000 0.200 0.000 0.025 0.025 0.250 0.425 0.025 0.025 0.000 0.025 0.000 0.225 0.000 0.000 0.015 0.088 0.265 0.000 0.029 0.000 0.191 0.059 0.353 0.000 0.000 0.000 0.237 0.434 0.026 0.039 0.026 0.092 0.013 0.026 0.105 0.000 sol33 189 191 193 195 197 199 201 203 205 207 209 211 213 215 217 219 0.013 0.013 0.079 0.329 0.184 0.000 0.092 0.039 0.000 0.026 0.184 0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.176 0.250 0.088 0.074 0.000 0.059 0.338 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.029 0.356 0.087 0.327 0.067 0.000 0.096 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.167 0.315 0.167 0.278 0.000 0.009 0.037 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.172 0.603 0.052 0.086 0.000 0.086 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.667 0.111 0.111 0.111 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.051 0.090 0.000 0.423 0.000 0.013 0.423 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.233 0.017 0.283 0.117 0.017 0.317 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.333 0.104 0.271 0.000 0.000 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.367 0.167 0.217 0.017 0.067 0.167 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.143 0.214 0.018 0.446 0.125 0.018 0.036 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.289 0.079 0.316 0.053 0.026 0.237 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.091 0.136 0.091 0.068 0.205 0.068 0.136 0.182 0.023 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.050 0.250 0.000 0.425 0.000 0.025 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.025 0.025 0.075 0.250 0.050 0.125 0.050 0.000 0.375 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.128 0.205 0.038 0.436 0.038 0.038 0.103 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.276 0.039 0.276 0.026 0.013 0.355 0.000 sat12 114 118 122 126 130 134 138 142 146 0.000 0.064 0.103 0.628 0.090 0.103 0.013 0.000 0.000 0.000 0.000 0.147 0.441 0.324 0.074 0.015 0.000 0.000 0.000 0.028 0.085 0.236 0.321 0.113 0.038 0.160 0.019 0.010 0.058 0.144 0.385 0.067 0.308 0.029 0.000 0.000 0.000 0.052 0.069 0.362 0.103 0.379 0.034 0.000 0.000 0.000 0.000 0.222 0.444 0.056 0.278 0.000 0.000 0.000 0.000 0.013 0.329 0.434 0.184 0.013 0.026 0.000 0.000 0.000 0.000 0.086 0.276 0.379 0.207 0.052 0.000 0.000 0.000 0.043 0.065 0.217 0.283 0.130 0.261 0.000 0.000 0.000 0.017 0.310 0.500 0.138 0.017 0.017 0.000 0.000 0.000 0.018 0.321 0.518 0.071 0.071 0.000 0.000 0.000 0.000 0.000 0.225 0.425 0.125 0.225 0.000 0.000 0.000 0.000 0.000 0.273 0.477 0.091 0.159 0.000 0.000 0.000 0.000 0.000 0.190 0.476 0.143 0.190 0.000 0.000 0.000 0.000 0.000 0.214 0.429 0.143 0.167 0.024 0.024 0.000 0.000 0.013 0.487 0.269 0.128 0.077 0.026 0.000 0.000 0.000 0.051 0.603 0.282 0.051 0.000 0.013 0.000 0.000 sat5 195 199 201 203 205 207 209 211 221 223 225 227 229 231 0.000 0.000 0.000 0.000 0.750 0.000 0.053 0.000 0.000 0.000 0.000 0.197 0.000 0.000 0.000 0.000 0.000 0.000 0.632 0.000 0.088 0.000 0.000 0.000 0.015 0.265 0.000 0.000 0.000 0.000 0.010 0.000 0.462 0.010 0.365 0.038 0.000 0.000 0.019 0.096 0.000 0.000 0.000 0.000 0.087 0.000 0.365 0.067 0.212 0.125 0.000 0.000 0.058 0.048 0.038 0.000 0.000 0.000 0.000 0.000 0.569 0.000 0.362 0.000 0.000 0.000 0.000 0.052 0.000 0.000 0.000 0.000 0.000 0.000 0.889 0.000 0.056 0.000 0.000 0.000 0.000 0.056 0.000 0.000 0.000 0.000 0.000 0.014 0.878 0.014 0.014 0.027 0.000 0.000 0.000 0.014 0.027 0.000 0.000 0.000 0.000 0.017 0.567 0.000 0.200 0.033 0.000 0.000 0.000 0.017 0.167 0.000 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.478 0.022 0.000 0.000 0.150 0.150 0.267 0.000 0.000 0.000 0.000 0.033 0.217 0.183 0.000 0.000 0.000 0.000 0.000 0.296 0.278 0.037 0.000 0.000 0.000 0.241 0.111 0.037 0.000 0.000 0.000 0.000 0.100 0.525 0.025 0.000 0.000 0.000 0.025 0.200 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.818 0.000 0.000 0.000 0.000 0.000 0.045 0.114 0.000 0.000 0.000 0.000 0.000 0.000 0.841 0.000 0.000 0.000 0.000 0.000 0.023 0.136 0.000 0.000 0.000 0.000 0.024 0.000 0.738 0.000 0.024 0.000 0.000 0.095 0.024 0.095 0.000 0.000 0.000 0.000 0.125 0.125 0.050 0.300 0.000 0.000 0.000 0.000 0.038 0.162 0.188 0.000 0.039 0.013 0.066 0.000 0.711 0.000 0.000 0.000 0.000 0.000 0.000 0.053 0.026 0.092 Ó The Genetical Society of Great Britain, Heredity, 82, 479±487. POPULATION STRUCTURE OF EUROPEAN WILD RABBITS 487 Appendix (contd.) Population Allele Locus (bp) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 233 237 239 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 sat7 177 179 181 183 185 187 189 191 193 195 197 201 203 205 209 211 0.000 0.000 0.000 0.392 0.297 0.108 0.135 0.027 0.041 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.394 0.242 0.000 0.076 0.227 0.000 0.061 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.050 0.150 0.400 0.020 0.030 0.080 0.200 0.020 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.019 0.083 0.380 0.093 0.046 0.130 0.194 0.019 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.086 0.000 0.190 0.138 0.000 0.086 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.056 0.222 0.000 0.000 0.722 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.000 0.487 0.026 0.026 0.064 0.372 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.371 0.065 0.016 0.161 0.323 0.065 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.370 0.043 0.022 0.457 0.087 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.317 0.067 0.067 0.450 0.033 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.037 0.000 0.000 0.037 0.444 0.037 0.000 0.056 0.000 0.370 0.000 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.342 0.105 0.000 0.105 0.000 0.421 0.026 0.000 0.000 0.000 0.024 0.000 0.095 0.000 0.000 0.000 0.405 0.024 0.071 0.071 0.024 0.262 0.024 0.000 0.000 0.000 0.000 0.000 0.265 0.147 0.000 0.324 0.206 0.000 0.059 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.368 0.079 0.026 0.289 0.132 0.079 0.000 0.000 0.000 0.000 0.000 0.000 0.078 0.000 0.000 0.031 0.281 0.063 0.000 0.063 0.344 0.016 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.257 0.029 0.100 0.557 0.043 0.000 0.000 0.000 0.000 0.000 0.000 0.000 sat8 134 136 138 140 154 156 158 182 0.256 0.000 0.705 0.000 0.013 0.013 0.013 0.000 0.206 0.000 0.721 0.000 0.029 0.015 0.000 0.029 0.148 0.019 0.833 0.000 0.000 0.000 0.000 0.000 0.093 0.185 0.694 0.028 0.000 0.000 0.000 0.000 0.224 0.000 0.776 0.000 0.000 0.000 0.000 0.000 0.222 0.000 0.722 0.000 0.056 0.000 0.000 0.000 0.218 0.013 0.744 0.000 0.026 0.000 0.000 0.000 0.446 0.000 0.536 0.000 0.018 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.018 0.000 0.946 0.018 0.018 0.000 0.000 0.000 0.054 0.000 0.661 0.000 0.286 0.000 0.000 0.000 0.105 0.000 0.895 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.952 0.000 0.048 0.000 0.000 0.000 0.024 0.024 0.952 0.000 0.000 0.000 0.000 0.000 0.125 0.063 0.813 0.000 0.000 0.000 0.000 0.000 0.200 0.050 0.613 0.000 0.138 0.000 0.000 0.000 0.250 0.056 0.556 0.000 0.139 0.000 0.000 0.000 Ó The Genetical Society of Great Britain, Heredity, 82, 479±487.