
Interactive Multi-style Pen-and-Ink Drawings from Images
Botong Qu

Oregon State University
Corvallis, OR 97331, USA

Yue Zhang
Oregon State University
Corvallis, OR 97331, USA

Eugene Zhang
Oregon State University
Corvallis, OR 97331, USA

Figure 1: Multi-style pen-and-ink illustration from images can expand the repertoire from single-style illustrations. While
the three roses (top left) which are depicted with hatching outline the pedals with artistic clarity, the same three roses (top
right) which are depicted with multi-style highlight the individual differences. The three roses now seem to have different
levels of freshness, pedal shapes and outlook. This added capability inspires novel artistic compositions and challenges the
feasibility of automation. In the bottom row, we allow multiple styles to be applied to the same object, i.e., both stippling
and hatching on the part of the dolphin’s body under water. This leads to the ability to clearly depict the spatial relationship
between water and dolphin that is difficult to achieve with a single-style illustration (left). Our system enables not only the
ability to apply different styles to different objects (top), but also the capability to apply multiple styles on the same object
(bottom). The original photo of the three roses is a flickr image created by user slgckgc, while the original photo of the dolphin
is from shutterstock.com.

ABSTRACT
Existing research in pen-and-ink stylization of images has focused
on using either stippling or hatching. In this paper, we introduce an
interactive multi-style rendering system in which an image can be
stylized with stippling, hatching, and scumbling. Different shading
techniques can be used on different objects in the image, leading
to various effects such as emphasis, de-emphasis, increase and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SA ’17 Technical Briefs, November, 2017, Bangkok, Thailand
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5406-6/17/11. . . $15.00
https://doi.org/10.1145/3145749.3149427

decrease in contrast, and illusion of texture and material properties
in objects. Moreover, different techniques can be applied on the
same object, thus enabling illustration of mirrors and transparent
materials. We also develop novel techniques that allow the user
to design any scumbling pattern beyond circles (circulism). Our
techniques can also generate high-quality scumbling results based
on the designed pattern. Ensuring adjacent objects with different
shading techniques havingmatching tones is essential inmulti-style
pen-and-ink drawing. We address this problem using an image-
based technique.

All of this research leads to an interactive multi-style pen-and-
ink system from images.

CCS CONCEPTS
• Computing methodologies→ Computer graphics; Render-
ing;



SA ’17 Technical Briefs, November, 2017, Bangkok, Thailand Qu, B., Y. Zhang, and E. Zhang

KEYWORDS
Pen-and-ink sketching, Non-photorealistic rendering, Multi-style
pen-and-ink, scumbling
ACM Reference format:
Botong Qu, Yue Zhang, and Eugene Zhang. 2017. Interactive Multi-style
Pen-and-Ink Drawings from Images. In Proceedings of SIGGRAPH Asia 2017
Technical Briefs, Bangkok, Thailand, November, 2017 (SA ’17 Technical Briefs),
4 pages.
https://doi.org/10.1145/3145749.3149427

1 INTRODUCTION
Pen-and-ink illustration is a powerful art form that has fascinated
generations. Existing research in pen-and-ink illustrations has
mostly focused on stylizing an input image or rendering a 3D scene
with well-known shading techniques such as stippling and hatching
(including cross-hatching) [Rosin and Collomosse 2012].

However, artists often combine these shading techniques to pro-
vide more or less emphasis on an object in the scene, increase and
decrease contrasts between adjacent objects, and depict material
properties and textures of the objects. In this paper, we provide an
interactive system in which the user can apply different styles on an
input image. Not only can different objects receive different styles
(Figure 1: top), one object can also be given multiple styles (Figure 1:
bottom). Unlike existing research, our system is interactive, thus
enabling quick feedback to the user.

Scumbling is a popular pen-and-ink style that has received rel-
atively little attention from the NPR community when compared
with stippling and hatching. While some research has been con-
ducted on simulating scumbling [Chiu et al. 2015], it focuses on
circulism, a form of scumbling in which the artist scumbles by
moving the pen in a circular fashion around a moving center. The
moving center is located on a second curve, which is referred to
as the track. While circulism is perhaps one of the most popular
scumbling patterns, artists can choose to scumble in other ways,
such as elliptical or even hyperbolic shapes. Our system allows the
user to design the scumbling patterns that actuate artistic goals.

One of the most important aspects of pen-and-ink illustrations
is the notion of tone. Unlike painting and watercolor, pen-and-ink
is usually monochromatic, i.e., applying black ink on a white paper.
Consequently, tone becomes the most important factor in showing
the shade in the result such as highlights and shadows. Existing
research has focused on achieving tone control for either stippling
or hatching. However, these techniques are inadequate for multi-
style rendering, especially if there are multiple styles applied to the
same object. In this paper, we address this difficulty with the ability
to generate matching tones on adjacent objects even when they are
given different styles.

2 PIPELINE
We first describe the interface and typical workflows of our system.

The input to our system is an image, which is used to automat-
ically generate a segmentation, a grey image (tone map), a set of
feature edges, and a directional field [Zhang et al. 2007]. The seg-
mentation is used to enable the user to apply different pen-and-ink
styles to different objects. The tone map is used to guide the place-
ment and densities of stipples, hatches, and scumbles during the

rendering stage. The feature edges, when stylized with hatches,
can show the silhouette and other feature lines in the objects. The
directional field is used to guide the orientations of the hatches and
the tracks of scumbles.

Our system enables the editing of any of these objects. For ex-
ample, two regions in the segmentation can be merged, the tone
of object can be darkened, and the directions in one region can be
rotated by 90 degrees. All this editing capability can provide the
detailed control over the final rendering result. Figure 2 shows an
example input image and the derived segmentation, tone map, and
feature lines after user editing.

In addition, for each object in the segmentation the user can
specify one or more styles. When multiple styles are applied to one
object, each style requires a weight. The total weight of all styles
defined on one object is 1. For hatching, the user can decide to use a
single family of hatches or more families of hatches (cross-hatching).
For scumbling, the user can design a scumble pattern using our
interface. In addition, the user can change the size of stipples and
the width and maximum length of one hatch or scumble stroke.

Once all this control is finalized, our system will generate a
pen-and-ink rendering based on the control.

(a) (b)

(c) (d)

Figure 2: An example input image to our system (a) and
derived segmentation (b), tone map (c), and feature lines
(d). Note that the segmentation, tone map, and feature lines
shown here have been edited using our system. The original
photo for the cup is a flickr image created by user rgarcia-
suarez74.

3 SCUMBLING PATTERN DESIGN
In this section we provide more detail on the design of scumble
patterns using our system and how we generate a scumble given a
scumble pattern.



Interactive Multi-style Pen-and-Ink Drawings from Images SA ’17 Technical Briefs, November, 2017, Bangkok, Thailand

Figure 3: One scumbling sample generated along one sub-
track. left top: draw scumbling strokes use the streamlines
as tracks.

Figure 4: Scumblings with different patterns (shown in the
inset). Scumbling drawings with circle pattern makes the
drawing feel fuzzy, while scumbling with a triangular pat-
tern creates a sharp and chaotic result. The input photo is
from Pics4Learning.com.

Similar to circulism, which is essentially drawing circles around
a moving center, our scumble placement is to continuously draw a
closed curve around a reference point that moves along a track.

The closed curve is referred to as a scumbling pattern. Our system
allows the user to design any closed curve using Bezier curve design.
In addition, the user can also select from a set of predefined curves
(circles, ellipses, squares, regular polygons, etc) and then apply
rotation, reflection, and scaling to the curve. Once the scumbling
pattern (the closed curve) has been specified, it is saved in our
database of scumble patterns and becomes available for future use.

The tracks for the scumbles are generated by placing streamlines
following the direction field. This process is essentially the same as
placing hatches.

Finally, to place a stroke of a scumbling pattern along a track,
we simply follow the process as shown in Figure 3. The user can
control the length of the scumbling stroke.

Figure 4 compares the results with two different scumbling pat-
terns: circle (top) and triangle (bottom).

4 TONE MATCHING
In this section we describe how we place shading primitives (stip-
ples, hatches, and scumbles) so that the resulting image matches
the input tone mapT , a grey-scale image. Note that in pen-and-ink,
a pixel is either black or white. Therefore, in the strictest sense,
the resulting pen-and-ink will never match the input tone map per
pixel. Fortunately, human eyes do not judge tones at the pixel level.
Instead, a group of pixels around the point of interest will collec-
tively provide the tone for the center of interest, i.e., a weighted
average of intensity of these pixels (kernel). Based on this observa-
tion, when comparing the tone difference between corresponding
pixels in two images (the input tone map and the current canvas),
we use a kernel of the pixel to compute the average squared dif-
ference in tone values in the two images [Turk and Banks 1996].
The kernel is a k × k square. In our setting, we use k = 16 as the
default, and the user can change it. The larger the k , the faster the
rendering process at the cost of less control of tones.

We start with an all-white canvas (current tone). We then itera-
tively add one shading primitive at a time.

When a stipple is to be added, we identify all the pixels whose
kernels cover the stipple and update the current tone values for
these pixels. If adding this stipple does not result in any pixel whose
tone exceeds an error threshold, this stipple will be added. Other-
wise, the stipple is not added.

Hatches are added in a similar fashion except that they are poly-
lines, i.e., a collection of line segments. Consequently, each time
a line segment is to be added, all the pixels whose kernel inter-
sects with at last one point on the line segment will be tested to
see whether by adding the line segment, the error in the current
tone and the input tone map T exceeds the same threshold. If no
pixel will be impacted by adding the segment, it will be accepted.
Otherwise, the line segment will be rejected. Starting with an initial
spacing д0 between the neighboring hatches, we add evenly-spaced
hatches based on д0 until no hatches can be added. If the resulting
canvas still has relatively large errors compared to T , we will halve
д0, which allows more hatches to be added and existing hatches
to be lengthened. Our system first tries to extend existing hatches,
and if necessary, will add new hatches. Figure 5 illustrates this
interleaving process for one iteration. The gap is iteratively halved
until no more hatches can be added or lengthened.

Scumbles are also polylines. However, we have observed that if
we only add one line segment at a time, the results may contain
many scumbles that are too short for the viewers to recognize the
underlying scumble pattern. To address this, we make a complete
turn of the scumble pattern a unit, whichwe either add in its entirety
or reject completely.



SA ’17 Technical Briefs, November, 2017, Bangkok, Thailand Qu, B., Y. Zhang, and E. Zhang

Figure 5: Interleaving strokes while rendering. The units
for updating tones are primitives for hatching, stippling
and scumbling (line segments, dots, and samples). For hatch-
ing, existing streamlines are extended (red) first, then more
streamlines (blue) are generated to fill the blank space by
decreasing 50% minimum distance between streamlines un-
til target tone is achieved. The input photo is a flickr image
created by user Dan Foy.

Note the above process does not differentiate between points
or line segments when deciding to whether accept or reject a new
primitive, this leads to matching of tones on adjacent objects that
have different styles.

If there are at least two styles defined for the same object, we will
generate for each style a desired tone map based on the weights as-
signed to each style. Then we can proceed to add stipples or hatches
and scumbles based on their respective desired tone maps. Con-
sequently, in the resulting image adjacent objects have matching
tones even when at least one object has at least two styles.

Figure 6 shows a stylized apple using hatching, stippling, and
scumbling, respectively, with the same desired tone map. The av-
erage pixelwise difference between the tone of stippling in Fig. 6
and the input image is 1.25%. The average pixelwise tone difference
between the hatching and the input and between the scumbling
and the input are 2.0% and 3.9% respectively.

Figure 6: From left to right, hatching, stippling and scum-
bling preserves similar tones in rendering results despite
their different primitives.

5 PERFORMANCE
All the results used in this paper are created by our system on
a laptop with Intel i7 CPU (2.7 GHz). They are created in a few
minutes; in particular, it took less than one minute to generate the
rendered results while the rest is attributed to the processing of the
input image as well as the design process.

In general, the total design time varies for each user on each art-
work. Some users may render one region with different parameters
a number of times. Our system is efficient in completing stylization,
and users can repeatedly render to reach satisfaction.

Our system allows interactive control over the steps in our
pipeline after importing one input image. Several computer sci-
ence students took a short training to use our system and were able
to create satisfactory results.

6 RESULTS
Figure 1 shows some benefits of multi-style pen-and-ink, such as
differentiating objects that are similar (top row) and more clearly
demonstrating the spatial relationships between overlapping ob-
jects (bottom row). Figure 7 shows two multi-style rendering from
the same input image that shows a moving car (top) and a parked
car (bottom).

(a)

(b)

Figure 7: Two multi-style renderings from the same input
image: (a) amoving car, and (b) a parked car. The input photo
is a flickr image created by user stvcr.

ACKNOWLEDGMENTS
We wish to thank Soo-Min Yoo for her artistic suggestions. This
research is supported by US National Science Foundation awards
1566236 and 1619383.

REFERENCES
Chun-Chia Chiu, Yi-Hsiang Lo, Ruen-Rone Lee, and Hung-Kuo Chu. 2015. Tone-

and Feature-Aware Circular Scribble Art. Comput. Graph. Forum 34, 7 (Oct. 2015),
225–234. DOI:http://dx.doi.org/10.1111/cgf.12761

Paul Rosin and John Collomosse. 2012. Image and Video-based Artistic Stylisation.
Springer Publishing Company, Incorporated.

Greg Turk and David Banks. 1996. Image-guided Streamline Placement. In Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’96). ACM, New York, NY, USA, 453–460. DOI:http://dx.doi.org/10.
1145/237170.237285

Eugene Zhang, James Hays, and Greg Turk. 2007. Interactive Tensor Field Design
and Visualization on Surfaces. IEEE Transactions on Visualization and Computer
Graphics 13, 1 (Jan. 2007), 94–107. DOI:http://dx.doi.org/10.1109/TVCG.2007.16


