10.07.2015 Views

A Thermal and Thermal Stress Analysis in Thermoelectric Solid ...

A Thermal and Thermal Stress Analysis in Thermoelectric Solid ...

A Thermal and Thermal Stress Analysis in Thermoelectric Solid ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JOURNAL OF THERMOELASTICITY ISSN 2328-241X VOL.1 NO. 2 June 2013A <strong>Thermal</strong> <strong>and</strong> <strong>Thermal</strong> <strong>Stress</strong> <strong>Analysis</strong> <strong>in</strong><strong>Thermoelectric</strong> <strong>Solid</strong> under the Influence ofThomson EffectMagdy A. Ezzat <strong>and</strong> H. M YoussefAbstract—Our purpose <strong>in</strong> this work is to exam<strong>in</strong>e the <strong>in</strong>fluence ofthe Thomson heat<strong>in</strong>g <strong>and</strong> the Fourier’s heat conduction, <strong>in</strong> thepresence of magnetic field, on half-space thermoelectricity solidwhose surface is subjected to a thermal shock. A constantThomson coefficient, <strong>in</strong>stead of traditionally a constant Seebeckcoefficient, is assumed. The charge density of the <strong>in</strong>duced electriccurrent is taken as a function of time. The Maxwell’s equationsare formulated <strong>and</strong> the thermoelectricity solid coupled govern<strong>in</strong>gequations are established. Laplace <strong>and</strong> Fourier transforms areused to get the solution <strong>in</strong> direct approach for a two-dimensionalproblem. The problem is <strong>in</strong> the context of the Lord <strong>and</strong>Shulman’s generalized thermoelasticity with one relaxation time.The distributions of the considered variables are representedgraphically. The comparisons are made with the results obta<strong>in</strong>ed<strong>in</strong> the case of absence Peltier coefficient.Index Terms—Magneto-thermoelectric materials; Thomsoneffect; <strong>Thermal</strong> analysis; <strong>Thermal</strong> stressI. INTRODUCTION<strong>Thermoelectric</strong> currents <strong>in</strong> the presence of magnetic fieldscan cause pump<strong>in</strong>g or stirr<strong>in</strong>g of liquid-metal coolants <strong>in</strong>nuclear reactors or stirr<strong>in</strong>g of molten metal <strong>in</strong> <strong>in</strong>dustrialmetallurgy. The thermal <strong>and</strong> mechanical properties of materialsvary with temperature, so that the temperature dependence ofmaterial properties must be taken <strong>in</strong>to consideration <strong>in</strong> thethermal stress analysis of these elements [1]. The <strong>in</strong>teractionbetween the thermal <strong>and</strong> magneto-hydrodynamic fields is amutual one ow<strong>in</strong>g to alterations <strong>in</strong> the thermal convection <strong>and</strong> toManuscript received April 1, 2013.Magdy A. Ezzat, Department of Mathematics, Faculty of Education,Alex<strong>and</strong>ria University, Alex<strong>and</strong>ria, Egypt(E-mail: maezzat2000@yahoo.com).H. M. Youssef, current address is Faculty of Eng<strong>in</strong>eer<strong>in</strong>g, Umm Al-QuraUniversity, P.O. 5555, Makkah, Saudi Arabia(E-mail: yousefanne2005@gmail.com). Home address: Department ofMathematics, Faculty of Education, Alex<strong>and</strong>ria University, Alex<strong>and</strong>ria,Egypt.4the Peltier <strong>and</strong> Thomson effects (although these are usuallysmall).Dur<strong>in</strong>g the 1990s there was a heightened <strong>in</strong>terest <strong>in</strong> the fieldof thermoelectrics driven by the need for more efficientmaterials for electronic refrigeration <strong>and</strong> power generation[2-4] .Proposed <strong>in</strong>dustrial <strong>and</strong> military applications ofthermoelectric materials are generat<strong>in</strong>g <strong>in</strong>creased activity <strong>in</strong> thisfield by dem<strong>and</strong><strong>in</strong>g higher performance, near roomtemperaturethermoelectric materials than those presently <strong>in</strong> use.A direct conversion between electricity <strong>and</strong> heat by us<strong>in</strong>gthermoelectric materials has attracted much attention because oftheir potential applications <strong>in</strong> Peltier coolers <strong>and</strong> thermoelectricpower generators [5].A discussion of thermoelectric effects <strong>and</strong> devices shouldstart with the most fundamental phenomena, the Seebeck effector thermo-power [6]. In the early 1800s Seebeck observed thatif two dissimilar materials were jo<strong>in</strong>ed together <strong>and</strong> thejunctions were held at different temperatures (T <strong>and</strong> ‏+T T) avoltage difference ( V) was developed that was proportionalto the temperature difference ( T). The ratio of the voltagedeveloped to the temperature gradient ( V/ T) is related toan <strong>in</strong>tr<strong>in</strong>sic property of the materials called the Seebeckcoefficient S or the thermo-power. The Seebeck coefficient isvery low for metals (only a few mVK -1 ) <strong>and</strong> much larger forsemiconductors (typically a few 100 mV K -1 ). A related effect(the Peltier effect) was discovered a few years later by Peltier,who observed that if an electrical current is passed through thejunction of two dissimilar materials, heat is either absorbed orrejected at the junction depend<strong>in</strong>g on the direction of the current.This effect is due to the difference <strong>in</strong> Fermi energies of the twomaterials. The absolute temperature T, the Seebeck coefficient S<strong>and</strong> the Peltier coefficient are related by the first Thomsonrelation ST .Several generalizations to the coupled theory of elasticityhave been <strong>in</strong>troduced. One can refer to Hetnarski <strong>and</strong> Ignaczak[7] for a review, presentation <strong>and</strong> some important resultsobta<strong>in</strong>ed <strong>in</strong> this field. They po<strong>in</strong>ted out five generalizations tothe coupled theory. Lord <strong>and</strong> Shulman [8] <strong>in</strong>troduced thegeneralized theory of thermoelasticity with one relaxation, <strong>in</strong>which the acceleration of heat flux was taken <strong>in</strong>to account <strong>and</strong>the Fourier's law of heat conduction was replaced by ageneralized version <strong>in</strong>clud<strong>in</strong>g a constant represents the time-lagneeded to establish steady state of heat conduction <strong>in</strong> an element


JOURNAL OF THERMOELASTICITY ISSN 2328-241X VOL.1 NO. 2 June 2013of volume when a temperature gradient is suddenly imposed onthat element, this constant was called relaxation time.Investigation of the <strong>in</strong>teraction between magnetic field <strong>and</strong>stress <strong>and</strong> stra<strong>in</strong> <strong>in</strong> a thermoelastic solid is very important due toits many applications <strong>in</strong> the field of geophysics, plasma physics<strong>and</strong> related topics. Especially <strong>in</strong> nuclear fields, the extremelyhigh temperatures <strong>and</strong> temperature gradients, as well as themagnetic fields orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong>side nuclear reactors, <strong>in</strong>fluencetheir design <strong>and</strong> operations.In recently Sherief <strong>and</strong> Ezzat [9] solved a thermal shockhalf space problem us<strong>in</strong>g asymptotic expansion. Ezzat <strong>and</strong>Youssef [10-12] solved two-dimensional problems ofgeneralized magneto-thermoelastic half-space of f<strong>in</strong>iteconductivity by Fourier <strong>and</strong> Laplace transforms. Ignaczak [13]studied a strong discont<strong>in</strong>uity wave <strong>and</strong> obta<strong>in</strong>ed adecomposition theorem for this theory [14]. Ezzat <strong>and</strong>El-Karamany [15] studied the propagation of discont<strong>in</strong>uities <strong>in</strong>magneto-thermoelastic half space.In the present work we shall formulateelectromagneto-thermoelastic coupled two-dimensionalproblem of a thermoelectricity half-space solid subjected to athermal shock on its surface. The Thomson coefficient assumedto be a constant but the charge density of the <strong>in</strong>duced electriccurrent considered as a function of time. The govern<strong>in</strong>gequations are established <strong>and</strong> Laplace <strong>and</strong> Fourier transformsused to obta<strong>in</strong> the solution with direct method. The distributionsof the considered variables are represented graphically. Thecomparisons are made with the results obta<strong>in</strong>ed <strong>in</strong> the case ofabsence Peltier coefficient.II. PROBLEM FORMULATIONWe consider the problem of a half-space thermoelectricity solid( x 0 ). A magnetic field with constant <strong>in</strong>tensityH (0,0,H ο)acts parallel to the bound<strong>in</strong>g plane (take as thedirection of the z-axis). The surface of the half-space issubjected at time t 0 to a thermal shock that is a function of y<strong>and</strong> t. Thus, all quantities considered will be functions of thetime variable t <strong>and</strong> of the coord<strong>in</strong>ates x <strong>and</strong> y.Due to the application of <strong>in</strong>itial magnetic field H, there resultsan <strong>in</strong>duced magnetic field h <strong>and</strong> an <strong>in</strong>duced electric field E. Thesimplified l<strong>in</strong>ear equations of electrodynamics of slowlymov<strong>in</strong>g medium for a homogeneous, thermally <strong>and</strong> electricallyconduct<strong>in</strong>g elastic solid arecurl h = J+D , (1)curl E = B , (2)div B =0, div D =ρ e , (3)B = μ ( H h),D = ε E . (4)οοThe above equations are supplemented by the Ohm's law formedia with f<strong>in</strong>ite conductivity.J = σ ( E μ u H )(5)οοIn the absence of the body force <strong>and</strong> <strong>in</strong>ner heat source, theconstitutive law for the theory of generalized thermoelasticityis:σ i j2 μ e i jλ e δ γ δ T , (6)ij ijwhereT T T o .The generalized Fourier's law with Thomson effect is given byShercliff [16]:qi oqi kT,i Ji, (7|)which givesq q kT J . (8)i,i o i,i ,ii i,iwhereqi,i CET ToeFrom equations (1) <strong>and</strong> (3), we haveJ D e . (9)Substitut<strong>in</strong>g from equations (9) <strong>in</strong>to equation (8), we getq q kT . (10)i,i o i,i ,ii eThus, the heat conduction equation will take the form k T = ρC T T + γ T e τe- . (11),ii ο o eE οThe cont<strong>in</strong>uity equation of the charges <strong>in</strong> the medium ise e i tdiv v 0 , (12)where viare the components of the velocity of the charges.Now, we will consider the charge density is function only <strong>in</strong>time i.e. . e e tThus, the cont<strong>in</strong>uity equation will take the form div v . (13)e e iIf we consider that, the velocity of the chargesv i isproportional to the velocity of the particles U , we can set thatvi Ui, (14)which gives i idiv v div U e(15)where is small non-dimensional constant.Hence, we have (16)e eewhich givesde de . (17)eHence, we obta<strong>in</strong> 0 exp e 0 1 e . (18) e e e0where e is the charge density when the stra<strong>in</strong> vanishes.Then, we obta<strong>in</strong>i5


JOURNAL OF THERMOELASTICITY ISSN 2328-241X VOL.1 NO. 2 June 20130e e 1 e e . (19)Hence, heat equation will take the formT, t T,tt e, τe,k T = ρC + γ T,ii ο t o ttE ο0e+ 1 e ewhere we can approximate the above equation to the follow<strong>in</strong>gform0T tTtt e, τe,k T = ρC , , + γ T + e (20),ii ο t o tt eE οThe constitutive equationsσ F ρ u , (21)i j ,j i i<strong>and</strong> stra<strong>in</strong>-displacement relations1e i j= ( u i ,j+ u j,i ) . (22)2The body force is given byF μi ο iJH . (23)In the above equations, a comma followed by a suffix denotesmaterial derivative <strong>and</strong> a superposed dot denotes the derivativewith respect to time, i,j x,y .The displacement components have the follow<strong>in</strong>g formu x = u( x,y,t ), u y = v( x,y,t ), u z = 0 , (24)hence, from equations (22) <strong>and</strong> (24), we obta<strong>in</strong> the stra<strong>in</strong>components u v 1 u ve x x = , e yy = , e x y = ( ), x y2 y x (25)e xz= eyz ezz 0.From equations (6) <strong>and</strong> (25), the stress components are given byγTσ =( λ 2μ ) uxx,x + λ v ,y (26)γTσ yy =(λ 2μ) v ,y + λ u ,x (27)σ zz =λ(u,x v ,y) γT(28)xy ,y ,xσ =μ u v . (29)The components of the magnetic <strong>in</strong>tensity vector <strong>in</strong> the mediumareH x = 0, H y = 0, H z = Hο h( x,y,t ) . (30)The electric <strong>in</strong>tensity vector is normal to both the magnetic<strong>in</strong>tensity <strong>and</strong> the displacement vectors. Thus, it has thecomponentsE x = E 1 , E y = E 2 , E z = 0 (31),The current density vector J be parallel to E, thusJ x = J 1 , J y = J 2 , J z = 0 . (32)The Ohm’s law (5) after l<strong>in</strong>earization givesvuJ= 1 σ ο(E1 μο H ο ) , J 2 = σ ο(E2 μο H ο ).ttEquations (1), (4) <strong>and</strong> (33) give the two equationshv E1= σ ο(E1 μο H ο ) ε ο , y t thu E= σ ο(E2 μο H ο ) εο x t t2(33)(34). (35)From equations (2), (5) we can get one-vanish<strong>in</strong>g component,namely E E h1 2 = μο y x t. (36)From equations (23) <strong>and</strong> (33), we obta<strong>in</strong> uF= x μο σοH ο(E2 μο H ο ) , (37) t vF= y μο σοH ο(E1 μο H ο ) t, (38)F z = 0 . (39)From equations (6), (26)-(29) <strong>and</strong> (37)-(39), we get2 T γ x u e2ρ =( λ μ ) μ u2 t x, (40) u+ μοσοH ο ( E2 μοH ο ) t2 T v e2ρ =( λ μ ) μ v γ2 t y y, (41) v μοσοH ο ( E1 μοH ο ) twhere,uve xy(42)For convenience, the follow<strong>in</strong>g non-dimensional variables areused:x c1ηx, y c1ηy, u c1ηu, v c1ηv,t c 21 ηt, γ (TT ο)σ2ijθ , τ=c1ητ, σ ,λ2μij μηhηEh E i 1,2(43) i, i ,2σομοH ο σομοHοc16


JOURNAL OF THERMOELASTICITY ISSN 2328-241X VOL.1 NO. 2 June 2013In terms of the non-dimensional quantities def<strong>in</strong>ed <strong>in</strong> equation(43), the above govern<strong>in</strong>g equations reduce to (dropp<strong>in</strong>g thedashed for convenience)2 2 2 2 2,x ,x 1 1 2 ,t ,tt(β 1) e u β θ β αβ (β E u ) β u , (44) 2 s s 2 θ ε 21+ o s ε1s e where all the <strong>in</strong>itial state of the material is at rest(59)2 2 2 2 2,y ,y 1 1 1 ,t ,tt(β 1) e v β θ β αβ (β E v ) β v , (45)2 θ (θ τθ ) ε (e τ e ) e , (46),t ,tt 1 ,t ,tt oh E1v= β1E1 ε2 , (47) y t th E2u= β1E2 ε2 x t t, (48) E1 E2h = y x t. (49)The constitutive equations reduce to2 2x x ,xσ (β 2)e 2 u β θ , (50)2 2y y ,yσ (β 2)e 2 v β θ , (51)zz2 2σ (β 2)e β θ , (52)σx y u,y v,x. (53)Differentiat<strong>in</strong>g equation (44) with respect to x, <strong>and</strong> equation (45)with respect to y, <strong>and</strong> then sum, we obta<strong>in</strong>22 2 2 h β1α e θ β21 α 0t t t(54)Differentiat<strong>in</strong>g equation (47) with respect to y, <strong>and</strong> equation (48)with respect to x, <strong>and</strong> then sum, we obta<strong>in</strong>22 e β1 ε2 h 2t t , (55) tThe heat equation will take the form2 22 1 o 2 12θ ε + ε e . (56) tt ttIII. FORMULATION IN THE LAPLACE TRANSFORM DOMAINWe will apply Laplace transform def<strong>in</strong>ed asst f s f t e d t ,0hence, the above equations will take the forms2 2 2 21 1 β αs s e θ β αsh 0(57)2 21 2 β s ε s h se(58)IV. FORMULATION IN THE FOURIER TRANSFORM DOMAINWe will apply Fourier transform def<strong>in</strong>ed as1 iqyf (q) e f (y) d y2 ,where1 iqyf (y) e f (q) dq2 .we get2d edx22d θdx2 2 2 q β1α+ε 1+ o s 1 ε1s e2 2 s s θ + β1αsh 2 2 21 o 1, (60) ε + s ε s e q s s θ , (61)2dh2 2se q +β21s ε2s hdx . (62)We can write the above system as follows:2d 2 1 e 2θ + 3hdx , (63) 2ddx2 5 θ 4e, (64)2d 2 7 h 6edx where2 2 q β α+ε + s 1 ε s , 1 1 1 o 123 14 1 o 16 s , 7 q+β1s ε2s .2 β αs , ε + s ε s ,(65)22 s s ,2 25 q s s ,The above system gives the follow<strong>in</strong>g ord<strong>in</strong>ary differentialequations6 4 2d d d L M N θ 0 6 4 2d x d x d x , (66)6 4 2d d d L M N e 0 6 4 2d x d x d x , (67)<strong>and</strong>6 4 2d d d L M N h 0 6 4 2d x d x d x , (68)whereL= ,1 5 7M= ,1 5 1 7 5 7 2 4 3 67


JOURNAL OF THERMOELASTICITY ISSN 2328-241X VOL.1 NO. 2 June 2013h0,q,s h0 0. (90)Us<strong>in</strong>g the conditions (86), (88) <strong>and</strong> (90), we get the solution ofthe problem <strong>in</strong> as follow:32 s<strong>in</strong> qa e x,q,s = 1 ki 5 e qs42ki 1 ki 7 3 6 2 kxi 3 , (91)i=12 2ki kjj1, ij32 s<strong>in</strong> qa θ x,q,s =1 qs32ki 1 ki 7 3 6 kxie , (92)i=12 2ki kjj1, ij2ki 1k i 7 2k3i 52 6 s<strong>in</strong> qa 36kxh ix,q,s = 1 e qs34 i=12 2 2ki 7 ki k j j1, ij. (93)VI. THE INVERSION OF LAPLACE AND FOURIER TRANSFORMSTo obta<strong>in</strong> the solution of the problem <strong>in</strong> the physicaldoma<strong>in</strong>, we have to <strong>in</strong>vert the double transforms <strong>in</strong> equations(91)-(93), these expressions can be formally expressed asfunctions of x <strong>and</strong> the parameters of the Fourier <strong>and</strong> Laplacetransforms q <strong>and</strong> s, of the form f x,q,s .First, we <strong>in</strong>vert the Fourier transform us<strong>in</strong>g the <strong>in</strong>versionformula given previously. This gives the Laplace transformexpression f x, y,sof the function f x,q,s as1 iq yf x, y,s e f x,q,sdq 2where f e<strong>and</strong>2o0 cos q y f is<strong>in</strong> q y f dq,eo(94)f denote the even <strong>and</strong> the odd parts of thefunction f x,q,s respectively.We shall now outl<strong>in</strong>e the numerical <strong>in</strong>version method used tof<strong>in</strong>d the solution <strong>in</strong> the physical doma<strong>in</strong>. For fixed values of x, y,<strong>and</strong> q the function <strong>in</strong>side braces <strong>in</strong> the last <strong>in</strong>tegral can beconsidered as a Laplace transform g s of some function g(t).The <strong>in</strong>version formula for the Laplace transform can be writtenascist1gt e g sds2 i , (95)ciwhere c is an arbitrary real number greater than all the real partsof the s<strong>in</strong>gularities of g s . Tak<strong>in</strong>g s = c +i y, the above <strong>in</strong>tegraltakes the form cte it ygt e g c iydy2 , (96)Exp<strong>and</strong><strong>in</strong>g the function h t exp ctg t <strong>in</strong> a Fourierseries <strong>in</strong> the <strong>in</strong>terval [0,2L], we obta<strong>in</strong> the approximate formula[16]:g t g t E , (97) Dwherek1cte i k t / Lgt Re e g c ikt / LL for 0 t 2L , (98)E D, the discretization error, can be made arbitrary small bychoos<strong>in</strong>g c large enough [16].S<strong>in</strong>ce the <strong>in</strong>f<strong>in</strong>ite series <strong>in</strong> equation (98) can be summed up to af<strong>in</strong>ite number N of terms, the approximate value of g(t) becomesNctegNt Re e g c ik t / LL i k t / L for 0 t 2L .(99)k1Us<strong>in</strong>g the above formula to evaluate g(t), we <strong>in</strong>troduce atruncation error E which, must be added to the discretizationTerror to produce the total approximation error.Two methods are used to reduce the total error. First, the“Korrecktur” method Honig <strong>and</strong> Hirdes [17] is used to reducethe discretization error. Next, the -algorithm is used to reducethe truncation error <strong>and</strong> hence to accelerate convergence.The Korrecktur method uses the follow<strong>in</strong>g formula to evaluatethe function g(t)2cLgt gt e g2L t ED ,where the discretization error ED ED. Thus, theapproximate value of g(t) becomesg2cL(t) g (t) e g 2L t , (100)NK N N where N is an <strong>in</strong>teger such that N N.We shall now describe the ε-algorithm that is used to acceleratethe convergence of the series <strong>in</strong> equation (99). Let N=2q+1where q is a natural number, <strong>and</strong> letms c ,mk1kbe the sequence of partial sums of a series (99). We def<strong>in</strong>e theε-sequence byo, m 0 , 1, m s m <strong>and</strong> p1,m11 p1,m1 , p 1,2,3,... .It can be shown that the sequence, , ,......... , converges to D1,1 3,1 5,1 N,1g tp ,m1 p ,m E faster thanthe sequence of partial sums s m , m 1,2,3,... .The actual procedure used to <strong>in</strong>vert the Laplace transformconsists of us<strong>in</strong>g equation (99) together with the ε-algorithm.The values of c <strong>and</strong> L are chosen accord<strong>in</strong>g to the criteriaoutl<strong>in</strong>ed <strong>in</strong> [17].9


JOURNAL OF THERMOELASTICITY ISSN 2328-241X VOL.1 NO. 2 June 2013 oF i ijElectric conductivityComponents of Lorentz forceKronecker delta functionγ =( 3λ 2 μ)ε 1 =α =β 1 =ε 2 =ηE2γ Tορ C ( λ 2μ )2μHο ολ2μσμccο212ηρCE=k2β = ( λ 2 μ ) o=kομ0e 2 T, Peltier coefficient at T o[10] M. A. Ezzat, H. M. Youssef, “Generation of generalizedmagneto-thermoelastic waves by thermal shock <strong>in</strong> ahalf-space of f<strong>in</strong>ite conductivity,” Ital. J. Pure Appl. Math.vol.19, pp. 9–26, 2006.[11] M. A. Ezzat, H. M. Youssef, “GeneralizedMagneto-Thermoelasticity <strong>in</strong> Perfectly Conduct<strong>in</strong>gMedium,” Int. J. <strong>Solid</strong>s <strong>and</strong> Struc. vol.42, pp. 6319-6334,2005.[12] M. A. Ezzat, H. M. Youssef, “State space approach forconduct<strong>in</strong>g magneto-thermoelastic medium with variableelectrical <strong>and</strong> thermal conductivity subjected to ramp-typeheat<strong>in</strong>g,” J. <strong>Thermal</strong> <strong>Stress</strong>es. vol. 32, pp. 414-427, 2009.[13] J. Ignaczak, “A strong discont<strong>in</strong>uity wave <strong>in</strong>thermoelasticity with relaxation times,” J. <strong>Thermal</strong> <strong>Stress</strong>es,vol. 8, pp. 25- 40, 1985.[14] J. Ignaczak, “Decomposition theorem for thermoelasticitywith f<strong>in</strong>ite wave speed,” J. <strong>Thermal</strong> <strong>Stress</strong>es. vol. 1, pp.41-52, 1978.[15] M. A. Ezzat, A. S. El Karamany, Propagation ofdiscont<strong>in</strong>uities <strong>in</strong> magneto-thermoelastic half-space, J.<strong>Thermal</strong> <strong>Stress</strong>es. vol. 28. pp. 331-358, 2008.[16] J.A. Shercliff, “<strong>Thermoelectric</strong> magnetohydrodynamics,” J.Fluid Mech. vol.191, pp. 231-251, 1979.[17] G. Honig, U. Hirdes, “A method for the numerical<strong>in</strong>version of the Laplace transform,“ J. Comp. Appl. Math.vol.10, pp.113 –132, 1984.[18] M. A. Ezzat, E. S. Awad, “Micropolar generalizedmagneto-thermoelasticity with modified Ohm’s <strong>and</strong>Fourier’s laws,” J. Math. Anal. Appl. vol. 99, pp. 353-364,2009.REFERENCES[1] R. B. Hetnarski, <strong>Thermal</strong> <strong>Stress</strong>es I, 2nd series, vol. 1,North-Holl<strong>and</strong>, 1986.[2] G. S. Nolas, D. Johnson, D. G. M<strong>and</strong>rus, <strong>Thermoelectric</strong>materials <strong>and</strong> devices. In: Proc. (2002), MaterialsResearch Society. Warrendale, PA, 691, 2002.[3] T. M. Tritt, Semiconductors <strong>and</strong> semimetals, recent trends<strong>in</strong> thermoelectric materials, Research, Academic Press,San Diego, 69–71, 2000.[4] T. M. Tritt, M. G. Kanatzidis, H. B. Lyon, G. D. Mahan,New material for small-scale thermoelectric refrigeration<strong>and</strong> power generation applications, Materials ResearchSociety, Warrendale, PA, 545, 1998.[5] D. T. Morelli, <strong>Thermoelectric</strong> devices. In: Trigg G L,Immergut E H (eds.) Encyclopedia of Applied Physics,Wiley-VCH, New York, 21 (1997) 339.[6] D. M. Rowe, CRC H<strong>and</strong>book of <strong>Thermoelectric</strong>s, CRCPress, 1995.[7] R. B. Hetnarski <strong>and</strong> J. Ignaczak, “Generalizedthermoelasticity,” J. <strong>Thermal</strong> <strong>Stress</strong>es, vol. 22, pp.451–476, 1999.[8] 8. H. Lord, Y. Shulman, “Generalized dynamic theory ofthermoelasticity,” J. Mech. Phys. <strong>Solid</strong>s, vol.15, pp.299-309, 1967.[9] H. H. Sherief, M. A. Ezzat, “A thermal shock problem <strong>in</strong>magneto-thermo-elasticity with thermal relaxation,” Int. J.<strong>Solid</strong>s <strong>and</strong> Struct. vol. 33, pp. 4449-4459, 1996.11


JOURNAL OF THERMOELASTICITY ISSN 2328-241X VOL.1 NO. 2 June 2013σ zz12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!